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Abstract

The theory of representation learning aims to build methods that provably invert the
data generating process with minimal domain knowledge or any source of supervision.
Most prior approaches require strong distributional assumptions on the latent variables
and weak supervision (auxiliary information such as timestamps) to provide provable
identification guarantees. In this work, we show that if one has weak supervision from
observations generated by sparse perturbations of the latent variables–e.g. images in a
reinforcement learning environment where actions move individual sprites–identification
is achievable under unknown continuous latent distributions. We show that if the
perturbations are applied only on mutually exclusive blocks of latents, we identify the
latents up to those blocks. We also show that if these perturbation blocks overlap, we
identify latents up to the smallest blocks shared across perturbations. Consequently,
if there are blocks that intersect in one latent variable only, then such latents are
identified up to permutation and scaling. We propose a natural estimation procedure
based on this theory and illustrate it on low-dimensional synthetic and image-based
experiments.

1 Introduction

If you are reading this paper on a computer, press one of the arrow keys... all the text
you are reading jumps as the screen refreshes in response to your action. Now imagine
you were playing a video game like Atari’s Space Invaders—the same keystroke would
cause a small sprite at the bottom of your screen to move in response. These actions
induce changes in pixels that are very different, but in both cases, the visual feedback
in response to our actions indicates the presence of some object on the screen—a virtual
paper and a virtual spacecraft, respectively—with properties that we can manipulate. Our
keystrokes induce sparse changes to a program’s state, and these changes are reflected
on the screen, albeit not necessarily in a correspondingly sparse way (e.g., most pixels
change when scrolling). Similarly, many of our interactions with the real world induce
sparse changes to the underlying causal factors of our environment: lift a coffee cup and
the cup moves, but not the rest of the objects on your desk; turn your head laterally, and
the coordinates of all the objects in the room shift, but only in the horizontal direction.
These examples hint at the main question we aim to answer in this paper: if we know that
actions have sparse effects on the latent factors of our system, can we use that knowledge
as weak supervision to help disentangle these latent factors from pixel-level data?

Self– and weakly-supervised learning approaches have made phenomenal progress in
the last few years, with large-scale systems like GPT-3 (Brown et al., 2020) offering
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Figure 1: Ball agent interaction environment. Different frames show the effect of sparse
perturbations.

large improvements on all natural language benchmarks, and CLIP (Radford et al., 2021)
outperforming state-of-the-art supervised models from six years ago (Szegedy et al., 2016)
on the ImageNet challenge (Deng et al., 2009) without using any of the labels.

Yet, despite these advances, these systems are still far from human reasoning abilities
and often fail on out-of-distribution examples (Geirhos et al., 2020). To robustly generalize
out of distribution, we need models that can infer the causal mechanisms that relate
latent variables (Schölkopf et al., 2021; Schölkopf and von Kügelgen, 2022) because these
mechanisms are invariant under distribution shift. The field of causal inference has developed
theory and methods to infer causal mechanisms from data (Pearl, 2009; Peters et al., 2017),
but these methods assume access to high-level abstract features, instead of low-level signal
data such as video, text and images. We need representation learning methods that reliably
recover these abstract features if we are to bridge the gap between causal inference and
deep learning.

This is a challenging task because the problem of inferring latent variables is not
identified with independent and identically distributed (IID) data (Hyvärinen and Pajunen,
1999; Locatello et al., 2019), even in the limit of an infinite number of such IID examples.
However, there has been significant recent progress in developing representation learning
approaches that provably recover latent factors Z (e.g., object positions, object colors,
etc.) underlying complex data X (e.g. image), where X ← g(Z), by going beyond the IID
setting and using observations of X along with minimal domain knowledge and supervision
(Hyvarinen and Morioka, 2016, 2017; Locatello et al., 2020; Khemakhem et al., 2020a).
These works establish provable identification of latents by leveraging strong structural
assumptions such as independence conditional on auxiliary information (e.g., timestamps).
In this work, we aim to relax these distributional assumptions on the latent variables to
achieve identification for arbitrary continuous latent distributions. Instead of distributional
assumptions, we assume access to data generated under sparse perturbations that change
only a few latent variables at a time as a source of weak supervision. Figure 1 illustrates
our working example of this assumption: a simple environment where an agent’s actions
perturb the coordinates of a few balls at a time. Our main contributions are summarized
as follows.

• We show that sparse perturbations that impact one latent at a time are sufficient to
learn the latents (up to permutation and scaling) that follow any unknown continuous
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distribution.

• Next, we consider more general settings, where perturbations impact one block of
latent variables at a time. In the setting where blocks do not overlap, we recover the
latents up to an affine transformation of these blocks.

• Further, we show that when perturbation blocks overlap, we get stronger identification.
In this setting, we prove identification up to affine transformation of the smallest
intersecting block. Consequently, if there are blocks that intersect in one latent
variable only, then such latents are identified up to permutation and scaling.

• We leverage these results to propose a natural estimation procedure and experimentally
illustrate the theoretical claims on low-dimensional synthetic and high-dimensional
image-based data.

2 Related works

Many of the works on provable identification of representations trace their roots to non-linear
ICA (Hyvärinen and Pajunen, 1999). Hyvarinen and Morioka (2016, 2017) were the first
to use auxiliary information in the form of timestamps and additional structure on the
latent evolution to achieve provable identification. Since then, these works have been
generalized in many exciting ways. Khemakhem et al. (2020a) assume independence of
latents conditional on auxiliary information, and several of these assumptions were further
relaxed by Khemakhem et al. (2020b).

Our work builds on the machinery developed we developed in Ahuja et al. (2022). There
we showed that if we know the mechanisms that drive the evolution of latents, then the
latents are identified up to equivariances of these mechanisms. However, we left the question
of achieving exact identification without such knowledge open. Here we consider a class of
mechanisms where an agent’s actions impact the latents through unknown perturbations.
We show how to achieve identification by exploiting the sparsity in the perturbations.
This class of perturbations was first leveraged to prove identification by Locatello et al.
(2020). However, Locatello et al. assume that the latents are independent, whereas we
make no assumptions on the distribution other than continuity. Our work also connects to
an insightful line of work on multi-view ICA (Gresele et al., 2020). Gresele et al. assume
independence of latents and prove identification under multiple views of the same latent
through multiple decoders.

Klindt et al. (2021) and Lachapelle et al. (2022) exploit different forms of sparsity
in time-series settings to attain identification. Both works require assumptions on the
parametric form of the latents (e.g., Laplacian, conditional exponential), auxiliary information
observed (e.g., actions, timestamp), and the structure of the graphical model dictating the
interactions between the latents and auxiliary information to arrive at identification. Yao
et al. (2021) and Lippe et al. (2022) model the latent evolution as a structural causal model
unrolled in time. Yao et al. exploit non-stationarity and sufficient variability dictated by
the auxiliary information to provide identification guarantees. Lippe et al. exploit causal
interventions on the latents to provide identification guarantees but require the knowledge of
intervention targets and assume an invariant causal model describing the relations between
any adjacent time frames. In concurrent work, Brehmer et al. (2022) leverage data generated
under causal interventions as a source of weak supervision and prove identification for
structural causal models that are diffeomorphic transforms of exogenous noise. In addition
to the above, there are a number of recent papers that explain the success of self-supervised
contrastive learning through the lens of identification of representations. Zimmermann et al.
(2021) showed that encoders minimizing contrastive losses identify the latents generated
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from distributions such as the von Mises-Fisher distribution. Von Kügelgen et al. (2021)
depart from the distributional assumptions made by Zimmermann et al. (2021) and show
that data augmentations filter out “nuisance” from the semantically relevant content to
achieve blockwise identification.

3 Latent identification under sparse perturbations

Data Generation Process We start by describing the data generation process used for
the rest of the work. There are two classes of variables we consider – a) unobserved latent
variables Z ∈ Z ⊆ Rd and b) observed variables X ∈ X ⊆ Rn. The latent variables Z are
sampled from a distribution PZ and then transformed by a map g : Rd → Rn, where g is
injective and analytic1, to generate X. We write this as follows

z ∼ PZ x← g(z) (1)

where z and x are realizations of the random variables Z and X respectively. It is impossible
to invert g just from the realizations of X (Hyvärinen and Pajunen, 1999; Locatello et al.,
2019). Most work has gone into understanding how structure of latents Z and auxiliary
information (e.g., timestamps, weak labels) play a role in solving the above problem. In this
work, we depart from these assumptions and instead investigate the role of data generated
under perturbations of latents to achieve identification. Define the set of perturbations as
I = {1, · · · ,m} and the corresponding perturbation vectors as ∆ = {δ1, · · · , δm}, where δi
is the ith perturbation. Each latent z is sampled from an arbitrary and unknown distribution
PZ . The same set of unknown perturbations in ∆ are applied to each z to generate m
perturbed latents {z̃k}mk=1 per sampled z and the corresponding observed vectors {x̃k}mk=1.
Each of these latents are transformed by the map g and we observe (x, x̃1, · · · , x̃m). Our
goal is to use these observations and estimate the underlying latents. We summarize this
data generation process (DGP) in the following assumption.

Assumption 1. The DGP follows

z ∼ PZ , x← g(z) z̃k ← z + δk,∀k ∈ I x̃k ← g(z̃k), ∀k ∈ I (2)

where g is injective and analytic, and Z is a continuous random vector with full support
over Rd. 2

To better understand the above DGP, let us turn to some examples. Consider a setting
where an agent is interacting with an environment containing several balls (See Figure 1).
The latent z captures the properties of the objects; for example, in Figure 1, z just captures
the positions of each ball, but in general it could include more properties such as velocity,
shape, color, etc.. The agent perturbs the objects in the scene by δk, which can modify a
single property associated with one object or multiple properties from one or more objects
depending on how the agent acts. Note that when the agent perturbs a latent, it can lead
to downstream effects. For instance, if the agent moves a ball to the edge of the table,
the ball falls in subsequent frames. For this work, we only consider the observations just
before and after the perturbation and not the downstream effects. In the Appendix, we
explain these downstream effects using structural causal models (See Section 7.2). We also
explain the connection between the perturbations in equation (2) (based on Locatello et al.
(2020)) and causal interventions. The above example is typical of a reinforcement learning

1A analytic function, g, is an infinitely differentiable function such that for all z′ in its domain, the
Taylor series evaluated at z′ converges pointwise to g(z′)

2The assumption on the support of Z can be relaxed.
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environment, other examples include natural videos with sparse changes (e.g., MPI3D data
(Gondal et al., 2019)).

In the above DGP in equation (2), we assumed that for each scene x there are multiple
perturbations. It is possible to extend our results to settings where we perturb each scene
only once, given a sufficiently diverse set of perturbations, i.e., for a small neighborhood of
a scene around x, each scene in the neighbourhood receives a different perturbation. We
compare these two approaches experimentally.

Learning objective The learner’s objective is to use the observed samples (x, x̃1, · · · , x̃m)
generated by the DGP in Assumption 1 and learn an encoder f : Rn → Rd that inverts
the function g and recovers the true latents. For each observed sample (x, x̃1, · · · , x̃m),
the learner compares all the pairs (x, x̃k) pre- and post-perturbation. For every unknown
perturbation δk used in the DGP in equation (2), the learner guesses the perturbation δ′k
and enforces that the latents predicted by the encoder for x and x̃k are consistent with the
guess. We write this as ∀ (x, x̃1, · · · , x̃m) generated by DGP in (2)

f(x̃k) = f(x) + δ
′
k. (3)

We denote the set of guessed perturbations as ∆
′

= {δ′1, · · · , δ
′
m}, where δ

′
i is the guess for

perturbation δi. We can turn the above identity into a mean square error loss given as

min
f,∆′

E
[∥∥∥f(x̃k)− f(x)− δ′k

∥∥∥2]
(4)

where the expectation is taken over observed samples generated by the DGP in (2) and
the minimization is over all the possible maps f and perturbation guesses in the set ∆

′ .
Note that a trivial solution to the above problem is an encoder that maps everything to
zero, and all guesses equal zero. In the next section, we get rid of these trivial solutions by
imposing an additional requirement that the span of the set ∆

′ is Rd. It is worth pointing
out that we do not restrict the set of f ’s to injective maps in theory and experiments. We
denote the latent estimated by the encoder for a point x as ẑ = f(x). It is related to the
true latent as follows ẑ = f ◦ g(z) = a(z), where a is some function that relates true z to
estimated ẑ. In the next section, we show that if perturbations are diverse, then a is an
affine transform. Further, we show that if perturbations are sparse, then a takes an even
simpler form.

3.1 Sparse perturbations

We first show that it is possible to identify the true latents up to an affine transformation
without any sparsity assumptions. Later, we leverage sparsity to strengthen identification
guarantees.

Assumption 2. The dimension of the span of the perturbations in equation (2) is d, i.e.,
dim
(
span

(
∆
))

= d.

The above assumption implies that the perturbations are diverse. We now state a
regularity condition on the function a.

Assumption 3. a is an analytic function. For each component i ∈ {1, · · · , d} of a(z) and
each component j ∈ {1, · · · , d} of z, define the set Sij = {θ | ∇jai(z + b) = ∇jai(z) +
∇2
jai(θ)b, z ∈ Rd}, where b is a fixed vector in Rd. Each set Sij has a non-zero Lebesgue

measure in Rd.
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If we restrict the encoder f to be analytic, then a is analytic since g is also analytic, thus
satisfying the first part of the above assumption. The second part of the above assumption
can be understood as follows: suppose we have a scalar valued function h : R → R that
is differentiable. If we expand h(u+ v) around h(u), by the mean value theorem we get
h(u + v) = h(u) + h′(ε)v, where ε ∈ [u, u + v]. If we vary u to take all the values in R,
then ε also varies. The above assumption states that the set of ε′s has a non-zero Lebesgue
measure. Under the above assumptions, we show that an encoder that solves equation
(3) identifies true latents up to an affine transform, i.e., ẑ = Az + c, where A ∈ Rd×d is a
matrix and c ∈ Rd is an offset.

Proposition 1. If Assumptions 1, 2, and 3 hold, then the encoder that solves equation (3)
(with ∆

′ s.t. dim
(
span

(
∆

′))
= d) identifies true latents up to an invertible affine transform,

i.e. ẑ = Az + c, where A ∈ Rd×d is an invertible matrix and c ∈ Rd is an offset.

The proof of above proposition follows the proof technique from Ahuja et al. (2022), for
further details refer to the Appendix (Section 7.1). We interpret the above result in the
context of the agent interacting with balls (as shown in Figure 1), where the latent vector z
captures the x and y coordinates of the nballs. Under each perturbation, the balls move along
the vector dictated by the perturbation. If there are at least 2nballs perturbations, then the
latents estimated by the learned encoder are guaranteed to be an affine transformation of
the actual positions of the balls.

3.1.1 Non-overlapping perturbations

In Proposition 1, we showed affine identification guarantees for the DGP from Assumption
1. We now explore identification when perturbations are one-sparse, i.e., one latent changes
at a time.

Assumption 4. The perturbations in ∆ are one-sparse, i.e., each δi ∈ ∆ has one non-zero
component.

Next, we show that under one-sparse perturbations, the latents estimated identify true
latents up to permutation and scaling.

Theorem 1. If Assumptions 1-4 hold and the number of perturbations per example equals
the latent dimension, m = d, 3 then the encoder that solves equation (3) (with ∆

′ as
one-sparse and dim

(
span

(
∆

′))
= d) identifies true latents up to permutation and scaling,

i.e. ẑ = ΠΛz + c, where Λ ∈ Rd×d is an invertible diagonal matrix, Π ∈ Rd×d is a
permutation matrix and c is an offset.

For the proof of above theorem, refer to Section 7.1 in the Appendix. The theorem
does not require that learner knows either the identity or amount each component changed.
However, the learner has to use one-sparse perturbations as guesses. Suppose the learner
does not know that the actual perturbations are one-sparse and instead uses guesses that
are p-sparse, i.e., p latents change at one time. In such a case, the ẑ and true z are related
to each other through a permutation and block diagonal matrix, i.e., we can replace Λ in
the above result to be a block diagonal matrix instead of a diagonal matrix (see Section 7.2
in the Appendix for details). In the context of the ball agent interaction environment from
Figure 1, the above result states that provided the agent interacts with one coordinate of
each ball at a time, it is possible to learn the position of each ball up to scaling errors.

We now consider a natural extension of the setting above, where the perturbations
simultaneously operate on blocks of latents. In the ball agent interaction environment, this

3We can relax this condition to m ≥ d, refer to the Appendix (Section 7.2) for details.
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can lead to multiple scenarios – i) the agent interacts with one ball at a time but perturbs
both coordinates simultaneously, ii) the agent interacts with several balls simultaneously.

Consider a perturbation δi ∈ ∆ (from equation (2)). We define the block of latents that
is impacted under perturbation δi ∈ ∆ as {j | δji 6= 0, j ∈ {1, · · · , d}}, where δji is the jth

component of δi. We group the perturbations in I based on the block they act upon, i.e.
perturbations in the same group act on the same block of latents. Define the set of the
groups corresponding to perturbations in I as GI . Define the set of corresponding blocks
as BI = {B1, · · · ,Bg}, where Bk is the block impacted by perturbations in group k. If BI
partitions the set of latent components indexed {1, · · · , d}, then it implies all the distinct
blocks are non-overlapping. We formally define this below.

Definition 1. Blockwise and non-overlapping perturbations. If the the set of blocks
BI corresponding to perturbations I form a partition of {1, · · · , d}, then I is said to be
blockwise and non-overlapping. Formally stated, any two distinct Bi,Bj ∈ BI do not
intersect, i.e., Bi ∩ Bj = ∅, and ∪iBi = {1, · · · , d}.

From the above definition it follows that two perturbations either act on the same block
or completely different blocks with no overlapping variables.

Assumption 5. The perturbations I (used in equation (2)) are blockwise and non-overlapping
(see Definition 1). Each perturbation in I is p-sparse, i.e., it impacts blocks of length p
(p ≤ d) at a time.

Assumption 6. The learner knows the group label for each perturbation i ∈ I. Therefore,
any two perturbations in ∆

′ associated with same group in GI impact the same block of
latents.

We illustrate the above Assumptions 5, 6 in the following example. Consider the ball
agent interaction environment (Figure 1). z = [z1x, z1y, · · · , znballsx, znballsy] is the vector of
positions of all balls, where zix/y is the x/y coordinate of ball i. If the agent randomly
perturbs ball i, then it changes the block (zix, ziy). We would call such a system 2-sparse.
All the perturbations on ball i are in one group. Since the agent knows the group of the
perturbation, it does not know the ball index but it knows whenever we interact with the
same ball.

Definition 2. If the latent variables recovered ẑ = ΠΛ̃z + c, where Π is a permutation
matrix and Λ̃ is a block-diagonal matrix, then the latent variables are said to be recovered
up to permutations and block-diagonal transforms.

In the theorem that follows, we show that under the assumptions made in this section,
we achieve identification up to permutations and block-diagonal transforms with invertible
p× p blocks.

Theorem 2. If Assumptions 1-3, 5, 6 hold, then the encoder that solves equation (3)
(where ∆

′ is p-sparse, dim
(
span

(
∆

′))
= d) identifies true latents up to permutation and

block-diagonal transforms, i.e. f(x) = ẑ = ΠΛ̃z + c, where Λ̃ ∈ Rd×d is an invertible
block-diagonal matrix with blocks of size p × p, Π ∈ Rd×d is a permutation matrix and
c ∈ Rd is an offset.

For the proof of the above theorem, refer to Section 7.1 in the Appendix. From the
above theorem, we gather that the learner can separate the perturbed blocks. However,
the latent dimensions within the block are linearly entangled. In the ball agent interaction
with 2-sparse perturbations, the above theorem implies that the agent can separate each
ball out but not their respective x and y coordinates. In the above theorem, we require
the learner to know the group of each intervention (Assumption 6). In Section 7.2 in the
Appendix, we discuss ideas on how to relax this assumption.
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3.1.2 Overlapping perturbations

In the previous section, we assumed that the blocks across different perturbations are
non-overlapping. This section relaxes this assumption and allows the perturbation blocks
to overlap. We start with a motivating example to show how overlapping perturbations
can lead to stronger identification.

Consider the agent interacting with two balls, where z = [z1x, z1y, z2x, z2y] describes
the coordinates of the two balls. The agent perturbs the first ball and then perturbs the
second ball. For the purpose of this example, assume that these perturbations satisfy
the assumptions in Theorem 2. We obtain that the estimated position of each ball
ẑix/y is linearly entangled w.r.t the true x and y coordinates. For the first ball we get
ẑ1x = a1z1x + a2z1y + a3. We also have the agent perturb the x coordinates of the first and
second ball together and then it does the same with the y coordinates. We apply Theorem
2 and obtain that the estimated x coordinates of each ball are linearly entangled. We write
this as ẑ1x = b1z1x + b2z2x + b3. We take a difference of the two relations for ẑ1x to get

(a1 − b1)z1x + a2z1y − b2z2x + a3 − b3 = 0

Since the above has to hold for all z1x, z1y, z2x, we get a1 = b1, a2 = 0, b2 = 0 and
a3 = b3. Thus ẑ1x = a1z1x + a3. Similarly, we can disentangle the rest of the balls.

We take the insights from the above example and generalize them below. Let us suppose
that from the set of perturbations I we can construct at least two distinct subsets I1 and
I2 such that both subsets form a blockwise non-overlapping perturbation (see Definition 1).
Perturbations in I1 (I2) partition {1, · · · , d} into blocks BI1 (BI2) respectively. It follows
that there exists at least two blocks B1 ∈ BI1 and B2 ∈ BI2 such that B1 ∩ B2 6= ∅. From
Theorem 2, we know that we can identify latents in block B1 and B2 up to affine transforms.
In the next theorem, we show that we can identify latents in each of the blocks B1 ∩ B2,
B1 \ B2, B2 \ B1 up to affine transforms.

Assumption 7. Each perturbation in I is p-sparse. The perturbations in each group
span a p-dimensional space, i.e., ∀q ∈ GI , dim

(
span

(
{δi}i∈q

))
= p. There exist at least

two distinct subsets of perturbations I1 ⊆ I and I2 ⊆ I that are both blockwise and
non-overlapping.

Theorem 3. Suppose Assumptions 1, 3, 6 and 7 hold. Consider the subsets I1 and I2 that
satisfy Assumption 7. For every pair of blocks, B1 ∈ BI1 and B2 ∈ BI2, the encoder that
solves equation (3) (where ∆

′ is p-sparse, dim
(
span

(
∆

′))
= d) identifies latents in each of

the blocks B1 ∩ B2, B1 \ B2, B2 \ B1 up to invertible affine transforms.

For the proof of the above theorem, refer to Section 7.1 in the Appendix. From the
above theorem, it follows that if blocks overlap at one latent only, then all such latents
are identified up to permutation and scaling. We now construct an example to show
the identification of all the latents under overlapping perturbations. Suppose we have
a 4 dimensional latent. The set of all contiguous blocks of length 2 is given as follows
{{1, 2}, {2, 3}, {3, 4}, {4, 1}}. Different 2-sparse perturbations impact these blocks. Observe
that every component between 1 to 4 gets to be the first element of a block exactly once
and the last element of the block exactly once. As a result, each latent gets to be the only
element at the intersection of two blocks. We apply Theorem 3 to this case and get that all
the latents are identified up to permutation and scaling. We generalize this example below.

Assumption 8. BI is a set of all the contiguous blocks of length p, where p < d. The
perturbations in each block span a p dimensional space. Further, assume that d mod p = 0.

8



Table 1: Comparing MCC and BMCC for non-overlapping
perturbations. The number of perturbations applied for each example
is given in parenthesis

d pZ MCC MCC BMCC BMCC
C-wise (d) C-wise (1) B-wise (d) B-wise (1)

6 Normal 0.99± 0.00 0.99± 0.00 0.99± 0.00 0.99± 0.01

10 Normal 0.99± 0.00 0.99± 0.01 0.99± 0.00 0.91± 0.02

20 Normal 0.99± 0.00 0.88± 0.03 0.99± 0.00 0.90± 0.01

6 Uniform 0.99± 0.00 0.99± 0.00 0.99± 0.00 0.96± 0.04

10 Uniform 0.99± 0.00 0.99± 0.01 0.99± 0.00 0.81± 0.05

20 Uniform 0.99± 0.00 0.82± 0.02 0.85± 0.08 0.51± 0.04

In the above assumption, we construct d contiguous blocks such that a blocks of length
p. The construction ensures that each index in {1, · · · , d} forms the first element of exactly
one block and last element of exactly one block. In the next theorem, we show that under
the above assumption, we achieve identification up to permutation and scaling.

Theorem 4. Suppose Assumptions 1, 3, 6 and 8 hold, then the encoder that solves the
identity in equation (3) (where ∆

′ is p-sparse, dim
(
span

(
∆

′))
= d) identifies true latents

up to permutations and scaling, i.e., ẑ = ΠΛz + c, where Π ∈ Rd×d matrix and Λ ∈ Rd×d is
a diagonal matrix.

For the proof of the above theorem, refer to Section 7.1 in the Appendix. The total
number of perturbations required in the above theorem is p×d. If we plug p = 1, we recover
Theorem 1 as a special case. The above result highlights that if the block lengths are larger,
then we need to scale the number of perturbations accordingly by the same factor to achieve
identification up to permutation and scaling. We assumed a special class of perturbations
operating on contiguous blocks. In general, the total number of distinct blocks can be up
to
(
d
p

)
. Suppose s distinct random blocks of length p are selected for perturbations. As s

grows, we reach a point where each latent component is at the intersection of two blocks
from different sets of blockwise non-overlapping perturbations. At that point, we identify
all latents up to permutation and scaling.

4 Experiments

Data generation processes We conducted two sets of experiments – low-dimensional
synthetic and high-dimensional image-based inputs – that follow the DGP in equation (2).
In the low-dimensional synthetic experiments we experimented with two choices for PZ a)
uniform distribution with independent latents, b) normal distribution with latents that are
blockwise independent (with block length d/2). We used an invertible multi-layer perceptron
(MLP) (with 2 hidden layers) from Zimmermann et al. (2021) for g. We evaluated for latent
dimensions d ∈ {6, 10, 20}. The training and test data size was 10000 and 5000 respectively.
For the image-based experiments we used PyGame (Shinners, 2011)’s rendering engine for g
and generated 64× 64 pixel images that look like those shown in Figure 1. The coordinates
of each ball, zi, were drawn independently from a uniform distribution, zi ∼ U(0.1, 0.9).
We varied the number of balls from 2 (d = 4) to 4 (d = 8). For these experiments, there
was no fixed-size training set; instead the images are generated online and we trained
to convergence. Because these problems are high dimensional, we only sampled a single
perturbation for each image.
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Figure 2: Illustrating blockwise dependence (d = 10).

Table 2: MCC for B-wise
(overlap).

d Distribution MCC
6 Normal 0.95± 0.01

10 Normal 0.96± 0.01

20 Normal 0.99± 0.01

6 Uniform 0.86± 0.03

10 Uniform 0.88± 0.03

20 Uniform 0.81± 0.03

Table 3: Image experiments

d MCC MCC MCC
C-wise B-wise B-wise

d
(
d
p

)
4 0.994 0.710 0.864
6 0.981 0.817 0.912
8 0.975 0.866 0.934

x

x̃

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
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1
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2

−c
2(n−1)
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−c
2(n−1)

f(x)

f(x̃)

Figure 3: (Left) Results for the image-base experiments. (Centre) Example images in
which the bottom left ball is shifted to the right. (Right) A trained encoder’s predictions
for the two images shown in (centre). The green ball prediction shifts right by ≈ c

2 and
the other balls left by ≈ c

2(n−1) . For further illustrations, refer to the animations in
https://github.com/ahujak/WSRL.

Loss function, architecture, evaluation metrics In all the experiments we optimized
equation (4) with square error loss. The encoder f was an MLP with two hidden layers of
size 100 for the low-dimensional synthetic experiments and a ResNet-18 (He et al., 2015)
for the image-based experiments. Further training details such as the optimizers used,
hyperparameters etc. are in the Appendix (Section 7.3). We used the mean correlation
coefficient (MCC) (Hyvarinen and Morioka, 2016) to verify the claims in Theorems 1 and 4.
If MCC equals one, then the estimated latents identify true latents up to permutation and
scaling. We extend MCC to blockwise MCC (BMCC) to verify the claims in Theorem 2. If
BMCC equals one, then the estimated latents identify true latents up to permutation and
block-diagonal transforms. Further details are in the Appendix (Section 7.3). The codes to
reproduce these experiments can be found at https://github.com/ahujak/WSRL.

Non-overlapping perturbations We start with results from experiments with one-sparse
perturbations. The set ∆ consists of m = d one-sparse perturbations that span a d
dimensional space. In the context of the image experiments, these perturbations correspond
to moving each ball individually along a single axis. The learner solves the identity in
equation (3) using a set of random one-sparse perturbations ∆

′ that span a d dimensional
space. In Table 1, we used the low-dimensional synthetic data generating process to compare
the effect of (i) applying all m = d perturbations to each instance z (following the DGP
in (2)), against a more practical setting (ii) where a perturbation is selected uniform at
random from ∆ and applied to each instance z. The results for (i) are shown in black and
the results for (ii) are shown in gray font in the C-wise (componentwise) column in Table 1.
We observed high MCCs in both settings. The results were similar in the more challenging
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image-based experiments (see Table 3, C-wise column) with MCC scores > 0.97 for all the
settings that we tested, as expected given the results presented in Theorem 1.

Next, we chose the set of perturbations ∆ to comprise of d 2-sparse non-overlapping
perturbations that span a d dimensional space. We repeated the same synthetic experiments
as above with one and d perturbations per instance. Under these assumptions we should
expect to see that pairs of latents are separated blockwise but linearly entangled within the
blocks (c.f. Theorem 2). We found this to be the case. The high BMCC numbers in Table
1 displayed under B-wise (blockwise) column (except for d = 20 and one perturbation per
sample) show disentanglement between the blocks of latents. In Figure 2, the first two
rows and columns show how the predicted latents corresponding to a block are correlated
with their true counterpart (see Predicted Zi vs True Zi) and the other latent in the block
(Predicted Z1 vs True Z2 and vice versa). The plots in the last column show that the
predicted latents did not bear a correlation with a randomly selected latent from outside
the block.

Overlapping perturbations In this section, we experimented with blocks of size two
that overlap in order to conform with the setting described in Theorem 4. We used the same
distributions as before and only changed the type of perturbations. The low-dimensional
synthetic results are summarized in Table 2. The results were largely as expected, with
a strong correspondence between the predicted and true latents reflected by high MCC
values.

On the image datasets (see Table 3), we found that the MCC scores depended on
both the number of balls and how the blocks were selected. We compared two strategies
for selecting blocks of latents to perturb: either select uniformly from all adjacent pairs
I = {(i mod d, i + 1 mod d)} (d blocks), or uniformly from all combinations of latent
indices, I = {(i, j) : i ∈ {1, . . . , d}, j > i} (

(
d
2

)
blocks). The latter lead to higher MCC

scores (ranging from 0.86 to 0.93) as it placed more constraints on the solution space.
The dependence on the number of balls is more surprising. To investigate the implied
entanglement from the lower MCC scores, we evaluated trained encoders on images where
we kept nballs − 1 balls in a fixed location and moved one of the balls (see Section 7.3 in the
Appendix for example images). If the coordinates were perfectly disentangled, the encoder
should predict no movement for static balls. When the moving ball shifted by c units, the
predicted location of the static balls shifted by ≈ −c

2(nballs−1) and the moving ball shifted ≈ c
2

units. We further verified this claim and ran blockwise experiments with nballs = 10 balls
(d = 20) and got MCC scores of 0.930 and 0.969 for d and

(
d
2

)
blocks respectively. In the

Appendix (Section 7.3), we show that this solution is a stationary point, and we achieve a
perfect MCC of one when nballs =∞.

5 Discussion and limitations

Our work presents the first systematic analysis of the role of sparsity in achieving latent
identification under unknown arbitrary latent distributions. We assume that every sample
(or at least every neighborhood of a sample) experiences the same set of perturbations.
A natural question is how to extend our results to settings where this assumption may
not hold. Data augmentation provides a rich source of perturbations; our results cover
translations, but extending them to other forms of augmentation is an important future
direction. We followed the literature on non-linear ICA (Hyvarinen et al., 2019) and made
two assumptions – i) the map g that mixes latents is injective, and ii) the dimension of the
latent d is known. We believe future works should aim to relax these assumptions.
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7 Appendix

We organize the Appendix into three sections. In Section 7.1, we provide the proofs to all the
propositions and the theorems. In Section 7.2, we discuss how some of the proposed results
can be extended. In Section 7.3, we provide supplementary materials for the experiments.

7.1 Proofs

We restate all the propositions and the theorems below for convenience. In the proofs that
follow, we use ∆ (∆′) to denote the set of perturbations and the matrix of perturbations
interchangeably (their usage is clear from the context). We start with the proof of
Proposition 1, which follows the proof technique from Ahuja et al. (2022).

Proposition 2. If Assumptions 1, 2, and 3 hold, then the encoder that solves equation (3)
(with ∆

′ s.t. dim
(
span

(
∆

′))
= d) identifies true latents up to an invertible affine transform,

i.e. ẑ = Az + c, where A ∈ Rd×d is an invertible matrix and c ∈ Rd is an offset.

Proof. We simplify the identity in equation (3) as follows.

f(x) + δ
′
i = f(x̃k)

f ◦ g(z) + δ
′
i = f ◦ g(z̃k)

a(z) + δ
′
i = a(z̃k)

a(z) + δ
′
i′ = a(z + δi)

(5)

In the above simplification, we use the following observation. Since x and x̃k are
generated from g and g is injective, we can substitute x = g(z) and x̃k = g(z̃k), where
z̃k = z + δk.

For simplicity denote the last line in above equation (5) as

a(z) + b
′

= a(z + b). (6)

We take gradient of the function in the LHS and RHS of the above equation (6)
separately w.r.t z. Consider the jth component of a(z + b) denoted as aj(z + b). We first
take the gradient of aj(z + b) w.r.t z below.

∇zaj(z + b) =
(dy
dz

)T
∇yaj(y),

where y = z + b, ∇yaj(y) is the gradient of aj w.r.t y and dy
dz denotes the Jacobian of y

w.r.t z. We simplify the above further to get

∇zaj(z + b) = ∇yaj(y) = ∇yaj(z + b).

We can write the above for each component of a as follows.

[
∇za1(z + b), · · · ,∇zad(z + b)

]
=
[
∇ya1(z + b), · · · ,∇yad(z + b)

]
= [∇ya1(z + b), · · · ,∇yad(z + b)] = JT(z + b),
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where J(z + b) is the Jacobian of a computed at z + b. We equate the gradient of LHS
and RHS in (6) to obtain

a(z + b) = a(z) + b
′

=⇒ JT(z + b)− JT(z) = 0.

Consider row j of this identity. For each z ∈ Rd

∇aj(z + b)−∇aj(z) = 0 =⇒


∇2

1aj(θ1)
∇2

2aj(θ2)
...

∇2
daj(θd)

 (b) = 0.

where ∇2aj is the Hessian of aj and ∇2
kaj(θk) corresponds to the kth row of the Hessian

matrix. Note that in the above expansion there is a different θk for each row (mean
value theorem applied to each component of ∇aj yields a different point θk on the line
joinining z̃ and z̃ + b). From Assumption 3 it follows that ∇2

kaj(θk)(b) = 0 over a set
with non-zero measure. Since aj is analytic ∇2

kaj(z)(b) is also analytic (each component
of the vector is a weighted sum of analytic functions). Therefore, we can conclude that
∇2
kaj(z)(b) = 0 for all z (follows from Mityagin (2015)). We can make the same argument

for each component k and conclude that ∇2aj(z)(b) = 0. From the identity in equation (3),
it follows that ∇2aj(z)(δj) = 0 for all j ∈ {1, · · · , d} and since the set ∆ = {δ1, · · · , δd} is
linearly independent ∇2aj(z) = 0 for all z. This implies a(z) = Az + c.

We substitute this in equation (5) to get A∆ = ∆
′ , where ∆ is the matrix of true

perturbations and ∆
′ is the matrix of guessed perturbations (recall we stated above that

we use ∆,∆
′ as sets and matrices interchangeably). We now need to show that A is

invertible. Suppose A was not invertible, which implies the rank of A ≤ n− 1. Following
Assumption 2, rank of ∆ is n. Note that rank of ∆

′ is also n. Note that if E = FG,
where E, F , G are three matrices, then rank(E) ≤ min{rank(F ), rank(G)}. Following this
identity, rank(∆

′
) ≤ n− 1, which is a contradiction. Therefore, A has to be invertible. This

completes the proof.

Theorem 5. If Assumptions 1-4 hold and the number of perturbations per example equals the
latent dimension, m = d, then the encoder that solves equation (3) (with ∆

′ as one-sparse and
dim
(
span

(
∆

′))
= d) identifies true latents up to permutation and scaling, i.e. ẑ = ΠΛz+ c,

where Λ ∈ Rd×d is an invertible diagonal matrix, Π ∈ Rd×d is a permutation matrix and c
is an offset.

Proof. Since Assumptions 1, 2, and 3 hold, we can use Proposition 1 to obtain that any
solution to equation (3) achieves affine identification guarantees w.r.t the true latents, i.e.
ẑ = Az+ c, where ẑ = f(x), z is the inverse image of x (x = g(z)), A ∈ Rd×d is an inverible
matrix and c ∈ Rd is the offset vector.

Define ei = [0, · · · , 1i, · · · 0] as the vector, which takes a value 1 at ith component and 0
everywhere else. Without loss of generality set of true perturbations is ∆ = {b1e1, · · · , bded}.
Note that all bi’s are non-zero as the span of ∆ has a dimension d.

Denote the corresponding set of guesses from the agent are ∆
′

= {c1eπ(1), · · · , cdeπ(d)},
where π : {1, · · · , d} → {1, · · · , d} is a map used by the agent to guess the coordinate
impacted by the perturbation. Note that since ∆

′ spans d dimensions π has to be a bijection
cj ’s are non-zero as the span of ∆

′ .
Take bjej ∈ ∆ and the corresponding guess ckek and substitute it in the relation
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ẑ = Az + c to get

ẑ = Az + c

ẑ + ckek = A(z + bjej) + c

ckek = bjAej
ck
bj
ek = Aej .

Since π is a bijection for every j there is a unique k in the RHS. From the above
equation, we gather that the jth column of A is ck

bj
ek. We apply this to all the columns

and conculde that ẑ = ΠΛz + c, where Λ is a diagonal matrix and Π is a permutation
matrix decided based on the bijection π ((Πk = eπ(k)), where Πk is the kth colum of the
matrix).

Theorem 6. If Assumptions 1-3, 5, 6 hold, then the encoder that solves equation (3)
(where ∆

′ is p-sparse, dim
(
span

(
∆

′))
= d) identifies true latents up to permutation and

block-diagonal transforms, i.e. f(x) = ẑ = ΠΛ̃z + c, where Λ̃ ∈ Rd×d is an invertible
block-diagonal matrix with blocks of size p × p, Π ∈ Rd×d is a permutation matrix and
c ∈ Rd is an offset.

Proof. Since Assumptions 1, 2, and 3 hold, we can use Proposition 1 to obtain that any
solution to equation (3) achieves affine identification guarantees w.r.t the true latents, i.e.
ẑ = Az+ c, where ẑ = f(x), z is the inverse image of x (x = g(z)), A ∈ Rd×d is an inverible
matrix and c ∈ Rd is the offset vector.

We start the proof by assuming that the agent knows the blocks that are impacted
under each perturbation, i.e., for each i ∈ I, the agent knows the block of the latents that
are impacted denoted as Ai. We relax this assumption later.

Following Assumption 5, we know that perturbations are p-sparse, blockwise and
non-overlapping. Without loss of generality, we can assume that the different groups on
which perturbations in ∆ act are given as {1, · · · , p}, {p+ 1, · · · , 2p} and so on. Consider
a perturbation δi, which belongs to Group 1 and impacts the latents {1, · · · , p}. For this
perturbation, the agent selects δ′i, which shares the same sparsity pattern. Therefore,
that the first p elements of δ′i and δi are both non-zero and the rest of the elements are
zero. Under these assumptions, we can write the relationship between true and guessed
perturbations as follows.

ẑ + δ
′
i = A(z + δi) + c

δ
′
i = Aδi

(7)

Denote the first p elements of row k of matrix A as ak[1 : p] and the first p elements of
the vector δi as δi[1 : p]. For k > p, we use the equation (7) to get ak[1 : p]Tδi[1 : p] = 0.

For all perturbations in Group 1, we can write the same condition, i.e., ak[1 : p]Tδi[1 :
p] = 0. Since the perturbations in Group 1 span a p dimensional space (following Assumption
2, 5), we get that ak[1 : p] = 0. Therefore, ak[1 : p] = 0 for all k > p.

Let q denote the number of perturbations in Group 1, where q ≥ p. For all k ≤ p we
can solve for the first p × p block using the perturbations guessed by the agent and the
true perturbations in Group 1. Denote the first p× p block of A as A[1 : p, 1 : p] and the
first p components of the q perturbations in Group 1 as ∆[1 : p, 1 : q]. Similarly, the first p
components of the q perturbations guessed by the learner is denoted as ∆

′
[1 : p, 1 : q]. We

now need to show that the block A[1 : p, 1 : p] is invertible. From the above equation in
(7), we get

A[1 : p, 1 : p]∆
′
[1 : p, 1 : q] = ∆[1 : p, 1 : q],
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where q is the number of perturbations in Group 1.
Since rank of ∆[1 : p, 1 : q] and ∆

′
[1 : p, 1 : q] is p, the rank of A[1 : p, 1 : p] cannot

be less than p or else it would lead to a contradiction. This shows that A[1 : p, 1 : p] is
invertible. We derived the properties of the first p columns of matrix A. For Group 2, we
similarly obtain that A[p+ 1 : 2p, p+ 1 : 2p] is an invertible matrix and rest of the elements
in columns {p+ 1, · · · , 2p} are zero. Due to symmetry of the setting, we can apply the same
argument to all the other blocks as well. Therefore, we conclude that A is block-diagonal
and invertible. This leads to the conclusion that ẑ = Λ̃z + c, where Λ̃ ∈ Rd×d and c ∈ Rd.

So far we assumed that the agent knows how the interventions in {1, · · · ,m} impact the
blocks {A1, · · · ,Am}. Under Assumption 6, the agent knows the groups of the perturbations
only. For perturbations {δ1, · · · , δp} in Group 1 that impact {1, · · · , p}, the agent guesses
{δ′1, · · · , δ

′
p}. Note that perturbations in {δ′1, · · · , δ

′
p} impact the same block of length p

with indices given as {α1, · · · , αp}. Recall the first p elements of row k of matrix A and
vector δi are denoted as ak[1 : p] and δi[1 : p] respectively. There exist d − p rows in A
for which we get ak[1 : p]Tδi[1 : p] = 0. Thus ak[1 : p] = 0 for all these rows. The first
p elements of remaining p rows form a square matrix denoted as A[α1 : αp, 1 : p], where
{α1, · · · , αp} are the indices guessed by the agent for the block corresponding to Group 1.
A[α1 : αp, 1 : p] satisfies

A[α1 : αp, 1 : p]∆[1 : p, 1 : q] = ∆
′
[α1 : αp, 1 : q],

where ∆
′
[α1 : αp, 1 : q] is the matrix of non-zero components of the q perturbation

vectors that the agent guesses. Using the same argument as above, we can argue that
A[α1 : αp, 1 : p] is invertible. We have derived the properties of first p columns of A. We
apply the same argument to other groups as well. Since the agent selects a set of unique p
indices for each group, we obtain that the matrix A can be factorized as a permutation
matrix times a block diagonal matrix. The first p rows of the permutation matrix with
index {1, . . . , p} have ones at locations {α1, · · · , αp} and so on. As a result, we get that
ẑ = ΠΛ̃z + c.

This completes the proof.

Theorem 7. Suppose Assumptions 1, 3, 6 and 7 hold. Consider the subsets I1 and I2 that
satisfy Assumption 7. For every pair of blocks, B1 ∈ BI1 and B2 ∈ BI2, the encoder that
solves equation (3) (where ∆

′ is p-sparse, dim
(
span

(
∆

′))
= d) identifies latents in each of

the blocks B1 ∩ B2, B1 \ B2, B2 \ B1 up to invertible affine transforms.

Proof. Following Assumption 7, we know that there exists at least two subsets I1 and
I2 that satisfy blockwise non-overlapping perturbations. Like in the previous proof, we
start this proof also with the case where the agent knows the exact sparsity pattern in
the perturbations. We relax this assumption in a bit. Consider a block B1 = {β1, · · · , βp}
impacted by the perturbations in I1. Since I1 is blockwise and non-overlapping, we
can follow the analysis in the first part of the previous theorem to get [ẑβ1 , · · · , ẑβp ] is an
invertible affine transform of [zβ1 , · · · , zβp ]. Hence, the latents in each of the blocks B1 ∈ GI1
are identified up to an afffine transform. Similarly, each block B2 ∈ GI2 is identified up
to an affine transform. Consider an element i ∈ B1 ∩ B2. ẑi can be expressed as an affine
transform of two different blocks of latents z1 and z2. z1 and z2 share some components,
we denote them as z12. The components exclusive to z1 (z2) are denoted as z11 (z22).

We write this condition as follows.

ẑi = aT1 z
11 + a2z

12 + a3

ẑi = bT1 z
22 + b2z

12 + b3

aT1 z
11 + (a2 − b2)Tz12 − bT1 z22 = b3 − a3

(8)
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If [a1, a2 − b2, b1] is non-zero, i.e., at least one element is non-zero, then the range of
LHS is R. But the range of the RHS is a constant. Therefore, for the above to be true
[a1, a2 − b2, b1] = 0 and that implies a3 = b3. As a result, the linear entanglement is now
confined to only the intersecting variables z12. We can repeat this argument for all elements
in B1 ∩ B2.

In the proof above, we relied on the assumption that the components impacted by each
intervention i ∈ I are known. We now relax this assumption and work with assumption
that was used in the previous theorem (Assumption 6), which states that the agent knows
the group label of each perturbation.

Consider the latents in the block B1 ∈ GI1 , which we denote as z1. We apply Theorem 2
to this block. Let the set of estimated latents that affine identify B1 be ẑ1 = [ẑα1 , · · · , ẑαp ],
where {α1, · · · , αp} is the set of indices in ẑ. We write this as [ẑα1 , · · · , ẑαp ] = A1z1 + c1.
B̃1 denotes the set of remaining latents not in the block B1. We denote the latents in the
block B̃1 as z1

c . Following Theorem 2, we get that the remaining elements of ẑ other than
ẑ1, which we denote as ẑ1

c , affine identify the latents z1
c in the block B̃1.

Similarly, consider the latents in the group B2 ∈ GI2 denoted as z2. ẑ2 = [ẑβ1 , · · · , ẑβp ]

denotes the latents that affine identify z2. B̃2 is the set of remaining latents. The remaining
elements of ẑ other than ẑ2 are denoted as ẑ2

c . ẑ2
c affine identifies the latents in the block

B̃2, which are denoted as z2
c .

Recall that the latents z11 ∈ B1 \ B2, z12 ∈ B1 ∩ B2, and z22 ∈ B2 \ B1. Consider a
latent that is shared between ẑ1 and ẑ2. Using the same analysis from equation (8), we
show that such an element puts a non-zero weight only on z12. Therefore, all the latents
shared between ẑ1 and ẑ2 have a non-zero weight on z12. Now consider a component of ẑ1

denoted as ẑαk
, which is not present in ẑ2. We can write the affine identification condition

as

ẑαk
= cT1 z

11 + cT2 z
12 + c3. (9)

We selected ẑαk
, which is not present in ẑ2. Since ẑαk

is in ẑ2
c , we have

ẑαk
= dT1 z

2
c + d3. (10)

If we take a difference of the above two equations (9) and (10), we get that c2 is equal
to zero (see the justification below).

dT1 z
2
c + d3 − cT1 z11 − cT2 z12 − c3 = 0

Note that there is no term associated with z12 in equation (10) as z2
c is the set of

elements not in z2. Now since the above equation (10) holds for all z, we get c2 = 0.
From the above analysis we conclude that the latents in ẑ1 can be divided into two

parts i) the latents that are shared with ẑ2; these latents are an affine transform of z12, ii)
the latents that are not shared with ẑ2; these latents are an affine transform of z11. We
write this condition as

ẑ1 =

[
e1 0
0 e2

] [
z11

z12

]
+ e3. (11)

Similarly, we get

ẑ2 =

[
f1 0
0 f2

] [
z22

z12

]
+ f3. (12)

We have already discussed above that f2 = e2 and the latter half of f3 corresponding to
z12 is equals corresponding half of e3.
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From the previous theorem, we know that the matrices in the above equations (11)
and (12) are invertible. Thus if z12 has q components, then e2 is q × q matrix and e1 is
p− q× p− q matrix. This establishes the affine identification of the smaller blocks obtained
by intersection of the blocks across two sets of non-overlapping blockwise perturbations.
This completes the proof.

Theorem 8. Suppose Assumptions 1, 3, 6 and 8 hold, then the encoder that solves the
identity in equation (3) (where ∆

′ is p-sparse, dim
(
span

(
∆

′))
= d) identifies true latents

up to permutations and scaling, i.e., ẑ = ΠΛz + c, where Π ∈ Rd×d matrix and Λ ∈ Rd×d is
a diagonal matrix.

Proof. In the above theorem, we use a set of perturbations I that are p-sparse and satisfy
the following property. The first d − (p − 1) blocks are {i, · · · , i + p − 1} from i = 1 to
i = d − p + 1. The remaining p − 1 blocks are {i, · · · , (i + p − 1) mod (d + 1) + 1} from
i = d− p+ 2 to d. In the d blocks each latent component i is the first element of the block
exactly once and also the last component exactly once.

Construct a partition of perturbations I1 with continguous blocks {k, · · · , k + p− 1}
and so on. Similarly, construct a partition of perturbations I2 {k − (p − 1), · · · , k} and
so on. Note that k is the first element of its block in I1 and it is the last element of its
block in I2. We can apply the Theorem 3 to conclude that kth component is identified
up to scaling and permutation error. We can state the same for all the components. This
completes the proof.

7.2 Extensions

7.2.1 Extending Theorem 1

In Theorem 1, we assumed that the number of perturbations m is equal to the number
of latent dimensions d. Suppose the number of latents is larger than d. We sub-sample d
distinct perturbation indices from {1, · · · ,m}. We solve the identity with the data generated
under sub-sampled perturbations in equation (3) with one-sparse guesses. If a solution
exists, then we can continue to use the analysis in Theorem 1. If a solution does not exist,
we sub-sample again and solve the identity in equation (3) until we find a solution.

In Theorem 1, we assumed that the learner knows that the ∆ in the DGP in equation
(2) is one sparse. Suppose the learner instead guesses that the perturbations are p-sparse,
where 1 < p < d and d mod p = 0. In this case, we can use analysis similar to Theorem 2
and guarantee blockwise identification, where the blocks are of size p× p.

7.2.2 Extending Theorem 2

In this section, we discuss how we can relax Assumption 6. We first show how to extend
Theorem 2 to this setting. In this section, we propose a sparsity test, which would be used
to test if the encoder learned is p-sparse or not. For the rest of the section, we work with
blockwise and non-overlapping interventions. We assume that d mod p = 0. Hence, the
number of non-overlapping blocks is r = d

p .
We take each sample point (x, x̃1, · · · , x̃m) and divide it into two parts. We keep the

first d perturbations in one set (x̃1, · · · , x̃d) to train the encoder and we use the remaining
(x̃d+1, · · · , x̃m) for checking sparsity. We refer to the first d perturbations as training
perturbations and the remaining perturbations as validation perturbations.

Assumption 9. {δi}di=1 is the set of training perturbations, which are p-sparse, blockwise
and non-overlapping. {δi}mi=d+1 is the set of validation perturbations, which are p-sparse,
blockwise and non-overlapping. The training perturbations span Rd.

19



Consider d perturbations and represent them as follows ∆d

∆d =


∆11 ∆12 · · · ,∆1r

∆12 ∆22 · · · ,∆2r
...

∆r1 ∆22 · · · ,∆rr


where ∆ij is p× p matrix. Without loss of generality under Assumption 9, we can write

∆d as a blockdiagonal matrix such that all matrices ∆ij = 0 for all i 6= j.
We write the inverse of ∆d as

∆−1
d =


∆̃11 ∆̃12 · · · , ∆̃1r

∆̃12 ∆̃22 · · · , ∆̃2r
...

∆̃r1 ∆̃22 · · · , ∆̃rr


Assumption 10. Each element in the matrix along the diagonal of ∆−1

d is non-zero, i.e.,
∀k ∈ {1, · · · , r},∀i, j ∈ {1, · · · , p}, ∆̃kk[i, j] 6= 0

Assumption 11. The set of interventions guessed by the learner ∆
′ contains d perturbations,

which are p-sparse, blockwise and non-overlapping.

We write the d corresponding perturbations that the agent guesses in the form of a
matrix as

∆
′
d =


∆

′
11 ∆

′
12 · · · ,∆′

1r

∆
′
12 ∆

′
22 · · · ,∆′

2r
...

∆
′
r1 ∆

′
22 · · · ,∆′

rr


where ∆

′
ij is a p× p matrix.

Define an indicator mask underlying matrix ∆
′ ; it takes a value one wherever there is a

non-zero entry and zero otherwise. Define the set of all the masks for ∆
′ that satisfy the

above assumption (Assumption 11) asM = {1, · · · , nmasks}. Now under the Assumption 9,
we get that the validation perturbations are blockwise and non-overlapping as well (though
they are not required to span the blocks). We now formalize a simple iterative procedure
in which the learner searches over masks that are compliant with the assumption above
(Assumption 9). The procedure relies on a sparsity test that we describe next.

In the sparsity test, we take a trained encoder and check if for each of the perturbations
in the validation set, at most p components change. If for any perturbation more than p
estimated components change, then the encoder fails the test.

Joint mask search and encoder learning

• Select candidate mask i fromM. Fill the non-zero entries with random values from
some distribution PM (we assume that PM has a continuous probability density
function) to generate a candidate ∆

′

• Solve the identity in equation (3) using samples from the perturbations selected in
the step above ∆

′ . Check for p-sparsity on the set of validation perturbations. If
the solution is at most p-sparse on all the validation perturbations, then select the
encoder. If the solution fails, then i = i+ 1 and go to step one.

The mask search procedure described above requires brute force search over many masks.
Even though the procedure is computationally intractable, we use it to demonstrate (see
Theorem 9 below) that knowledge of sparsity can suffice.
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Theorem 9. Suppose Assumptions 1, 3, 9, 10, and 11 hold, then an encoder that is output
learned following the joint mask search and encoder learning procedure above identifies
latents up to permutation and block-diagonal transforms with probability one.

Proof. We take the encoder f(x) learned from joint mask search and encoder learning
procedure described above. Following Assumptions 1, 3, 9 and 11, we obtain that f(x) =
ẑ = Az + c, where x = g(z), A is an invertible matrix and c is an offset. Following the
analysis in Proposition 1, we obtain A matrix is given as A = ∆

′
d∆
−1
d (substitue ẑ = Az+ c,

ẑ + ∆d = Az + c+A∆
′
d). We index the matrix in terms of the blocks.

The matrix at location (i, j) is Aij = ∆
′
ij∆̃jj (since ∆ is a blockdiagonal matrix, i.e.,

∆ij = 0 for i 6= j but ∆ii 6= 0). Each column of ∆
′ consists of p non-zero entries. Using

this and Aij = ∆
′
ij∆̃jj we argue next that the number of non-zero entries in each column

of A are at least p. We write Aij [k, q] =
∑

l ∆
′
ij [k, l]∆̃jj [l, q]. Since ∆

′
ij [k, l] and ∆̃jj [l, q]

both take non-zero value, the first term in the above summation is non-zero. Since the
other terms depend on random variables drawn independently, the probability that the
sum equals zero is zero. Therefore, for each of the p indices k where the mask is non-zero,
the Aij [k, q] is non-zero.

Suppose at least one column block of A, say jp + 1 : (j + 1)p, contains two columns
which exhibit a different sparsity pattern. Since there are at least two columns which
share a different sparsity pattern, there is at least one row where only one of them is zero
and other is non-zero. Therefore, in this column block we have at least p+ 1 rows which
have at least one non-zero element. The encoder passed the sparsity test, i.e., for all the
perturbations on blocks of the form jp + 1 : (j + 1)p we have at most p-sparse output.
Therefore, at least one of the p + 1 rows has to multiply with the block and output a
zero, which is a zero probability event (since the non-zero elements of A matrix are all
continuous random variables). Thus if any contiguous block has different sparsity pattern
across columns, then the encoder is selected with probablity zero. Thus from this we can
conclude that for a selected encoder, each column block exhibits a sparsity pattern that
is same across all the columns in the block. To ensure that A is an invertible, all blocks
exhibit a non-overlapping sparsity pattern. Therefore, A is permutation times a diagonal
matrix. We now illustrate what choices of ∆

′ lead to an A that passes the sparsity test. If
for every i there exists a unique j for which ∆

′
ij is invertible and every other value of j,

∆
′
ij = 0, then A is permutation times a diagonal matrix. This completes the proof.

In this section, we showed that we we do not need to make Assumption 6 and the
knowledge of sparsity suffices to do blockwise identification. Following similar analysis as
above, we can extend Theorem 4 as well.

7.2.3 Connection with causal interventions

In the DGP in equation (2), we assumed that Z is sampled from any distribution PZ . We
now consider a special case, where Z = [Z1, · · · , Zd] follows a certain structural causal
model S given as

Zi ← fi(Pa(Zi), Ui), ∀i ∈ {1, · · · , d}

where Zi is generated from its parent variables denoted by Pa(Zi) using the mechanism
fi : ΠPa(Zi)Zi × Ui → R, which also takes the noise variable Ui as input. The support of
Zi is denoted by Zi and that of Ui is denoted by Ui. Suppose we perturb Zk. Under this
perturbation all the latent variables for which Zk is an ancestor are going to be also affected,
while keeping the rest of the variables unchanged.
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Post the perturbation, the immediate children of Zk are affected and then their children
and so on. Therefore, it is reasonable to assume that we first observe the impact of
perturbation on Zk itself and eventually observe the impact on child variables. Consider a
sample point [(z1, · · · zd), (x1, · · · , xn)] generated by equation (1). The different observations
under perturbations are

• Pre perturbation: [(z1, · · · zk, · · · , zd), (x1, · · · , xn)]

• At the time of perturbation: [(z1, · · · zk + δ, · · · , zd), (x
′
1, · · · , x

′
n)]

• Sufficiently long after the perturbation: [(z1, · · · zk + δ, · · · , z′′
d ), (x

′′
1 , · · · , x

′′
n)]

In the above, the latent of the sample pre perturbation and at the time of perturbation
only differ in the perturbed components. However, when sufficient period has passed,
other latent variables that are on the downstream path from Zk also change. In this
work, we only deal with original samples and the samples at the time of perturbation. In
causal interventions, we assume access to samples before perturbation and those generated
sufficiently long after the perturbation.
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Figure 4: Regression of predicted latent values against true latent values for componentwise
perturbations (d = 10).

7.3 Supplementary materials for experiments

Loss function, architecture, and other hyperparameters In all the experiments
we optimized equation (4) with square error loss. The encoder f was an MLP with two
hidden layers of size 100 for the low-dimensional synthetic experiments and a ResNet-18
(He et al., 2015) for the image-based experiments. We used the Adam optimizer (Kingma
and Ba, 2014) with a learning rate of 0.005 with batches of 10000 examples for 2000 epochs
for the low-dimensional synthetic experiments; the image-based models were trained online
with a learning rate of 1e− 4 and a batch size of 100.

Evaluation metrics Blockwise MCC (BMCC) is a natural extension of MCC; instead
of measuring correlations between true and estimated latents. We compute the R2 score
between every pair of blocks impacted under true perturbation and the guessed perturbation.
We find the optimal matching between pairs of blocks to maximize the average R2 score
between the matched blocks. We report the R2 score under the optimal matching in Table
1.

Supplementary figures In Figure 4, we plot the predicted latents against the true
latent value for two of the ten latent dimensions (the two dimensions that we plot are
randomly selected) when we perturb one component at a time (setting corresponds to
the paragraph on non-overlapping perturbations in Section 4). The plot shows a linear
relationship between the true and the predicted latent; note that there are different slope
and intercept for the different latents. The slope depends on the ratio between the change
in the true latents and the predicted latent. In Figure 5, we plot the predicted latents
against the true latent value for two of the ten latent dimensions (the two dimensions that
we plot are randomly selected) when we perturb a block of two components at a time and
the blocks overlap (setting corresponds to the paragraph on overlapping perturbations in
Section 4). In Figure 6, we show a full set of images for the experiment shown in Figure 1.
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Figure 5: Regression of predicted latent values against true latent values for overlapping
perturbations (d = 10).

7.3.1 Stationary point

Recall our learning objective is to minimize the objective given in Equation 4. We use a
deep network, f̃(·; θ) parameterized by θ as our encoder and we can rewrite Equation 4 as
a loss function that depends on our choice of θ and ∆′ (the learner’s guess for the offsets),

L(θ,∆
′
) = E

[∥∥∥f(x̃k; θ)− f(x; θ)− δ′k
∥∥∥2]

= E
[∑

j

(
fj(x̃k; θ)− f(x; θ)− δ′k

)2]
We take the partial derivative of the loss with respect to one of the parameters θi and

obtain

∂L(θ)

∂θi
= Ex,x̃

∑
j

(fj(x̃; θ)− fj(x; θ)− δ′j)︸ ︷︷ ︸
=:ej(x,x̃k,θ)

(
∂fj(x̃)

∂θi
− ∂fj(x)

∂θi
)︸ ︷︷ ︸

=:φj(x,x̃k,θi)


Suppose we learn a function f̃ for which ej(x, x̃k, θ) is independent of x and x̃ and we

denote it as ej(θ) for all j ∈ {1, · · · , d}. Under this assumption, we simplify the above
expression as follows.

∂L(θ)

∂θi
=
∑
j

ej(θ)Ex,x̃
[
φj(x, x̃k, θi)

]
=
∑
j

ej(θ)µj(θ)

where µj(θ) = Ex,x̃
[
φj(x, x̃k, θi)

]
. µj(θ) measures the expected difference in the guessed

perturbation for the component j when parameter θi of the neural network is changed. If
the impact of change in the parameter is similar on average across all the components, i.e.,
µj(θ) = µk(θ) = µ(θ) for all j 6= k, then

∂L(θi)

∂θi
=
∑
j

ej(θ)Ex,x̃
[
φj(x, x̃k, θi)

]
= µ(θ)

∑
j

ej(θi)

Under these conditions, this is a stationary point if
∑

j ej(θi) = 0 for all θi. Empirically
we observe that if j is perturbed by c, then ej(θ) = c

2 and other components k 6= j,
ej(θ) = −c

2(nballs−1) . If we substitute this in the equation above, we find that the partial
derivative is zero. Since this holds for all the components θi, we can conclude that the
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Figure 6: Full set of images for the experiment shown in Figure 1 used to render the
supplementary animation. The three balls on the diagonal are stationary throughout and
the fourth ball is moved across a 10× 10 grid; we get the associated network predictions
and animate them to show the predicted movement of the stationary balls in the attached
animation.
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point observed empirically is a stationary point. Under the assumption that ej(x, x̃k, θ)
is independent of ej(x, x̃k, θ), we can follow the analysis presented in proof of Theorem 1,
we get ẑ = Az + c. If z changes by [c, 0, · · · , 0], then ẑ = [ c2 ,−

c
2(nballs−1) , · · · ,−

c
2(nballs−1) ].

We use this to obtain A[i, j] = −1
2(nballs−1) , where i 6= j and A[i, i] = 1

2 . If nballs =∞, then
A is a diagonal matrix, which implies that the MCC is one. In the discussion above, we
assumed that the learner knows the component that changes. If the learner does not know
the component that changes, then that introduces permutation errors as well.

26


	1 Introduction
	2 Related works
	3 Latent identification under sparse perturbations
	3.1 Sparse perturbations
	3.1.1 Non-overlapping perturbations
	3.1.2 Overlapping perturbations


	4 Experiments
	5 Discussion and limitations
	6 Acknowledgements
	7 Appendix
	7.1 Proofs
	7.2 Extensions
	7.2.1 Extending Theorem 1
	7.2.2 Extending Theorem 2
	7.2.3 Connection with causal interventions

	7.3 Supplementary materials for experiments
	7.3.1 Stationary point



