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Abstract
Instrumental variable (IV) methods are used to es-
timate causal effects in settings with unobserved
confounding, where we cannot directly experi-
ment on the treatment variable. Instruments are
variables which only affect the outcome indirectly
via the treatment variable(s). Most IV applica-
tions focus on low-dimensional treatments and
crucially require at least as many instruments as
treatments. This assumption is restrictive: in the
natural sciences we often seek to infer causal ef-
fects of high-dimensional treatments (e.g., the
effect of gene expressions or microbiota on health
and disease), but can only run few experiments
with a limited number of instruments (e.g., drugs
or antibiotics). In such underspecified problems,
the full treatment effect is not identifiable in a
single experiment even in the linear case. We
show that one can still reliably recover the projec-
tion of the treatment effect onto the instrumented
subspace and develop techniques to consistently
combine such partial estimates from different sets
of instruments. We then leverage our combined es-
timators in an algorithm that iteratively proposes
the most informative instruments at each round of
experimentation to maximize the overall informa-
tion about the full causal effect.

1. Introduction
Motivation. Understanding cause-effect relationships in
high-dimensional systems is a common challenge in various
scientific areas. For example, how does our gut microbiome
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(treatment X) causally influence health and disease (out-
come Y )? How does the transcriptome of a cell (treatment
X) causally influence its function (outcome Y )? Typically,
the high-dimensional treatment and the outcome are heavily
confounded via unknown mechanisms, rendering the strong
assumptions required for cause-effect estimation, i.e., com-
puting p(y | do(x)), from observational data sampled from
p(x, y) untenable. Hence, experimentation is indispensable
for the ultimate goal of identifying and estimating these
causal relationships. Whenever we can intervene directly
on the treatment, we have direct access to p(y | do(x)) and
cause-effect relationships can be captured by mere asso-
ciation in experiments. We are motivated by two crucial
realizations: (a) oftentimes practically feasible experiments
do not intervene directly on the treatment X but some other
variable Z; (b) still, the scientific goal is to estimate the
effect of the high-dimensional X on the outcome Y (instead
of the effect of the actual intervention on Z).

Regarding (a), administering certain antibiotics has a strong
and highly predictable effect on the gut microbiome, but it
does not break causal links from potentially unobserved con-
founders to X; similarly, applying various drug (dosages)
to cell cultures influences the transcriptome, but again does
not directly intervene on it. Even targeted gene knockouts
or CRISPR/Cas gene editing (Zhang et al., 2015; Fu et al.,
2013) do not constitute interventions as defined in causal
inference (Pearl, 2009). They do not strip the microbiome or
transcriptome free of any other causal influences, i.e., they
may still be confounded with the outcome of interest. As for
(b), ultimately we give a certain antibiotic to learn about how
the microbiome causally influences disease (p(y | do(x)))
and not merely about what overall effect the antibiotic has
on disease (p(y | do(z))).

In such settings, the variable experimented on (antibiotics,
drugs, gene knockout/edits) can at most serve as an instru-
ment Z for the treatment: (A1) Z (strongly) affects the
treatment (Z ̸⊥⊥X). (A2) Z is independent of unobserved
confounders U (Z ⊥⊥U ). (A3) Z “only affects the outcome
via the treatment” (Y ⊥⊥Z | {X,U}). Whether we can as-
certain these conditions depends on the setting. For example,
orally administered sub therapeutic dosages of antibiotics
(such that no antibiotics can be detected in the bloodstream)
may satisfy this condition (Ailer et al., 2021). Similarly,
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genetic interventions (or drugs) may indeed only influence
cell function via the transcriptome.

As a result, even with access to experimentation, we must
resort to instrumental variable (IV) techniques to estimate
the treatment effect. A number of challenges arise in this
setting even in the fully linear case: (B1) At least as many
instruments as treatment variables are required for the causal
effect to be identified (just- or overspecified setting). This
is not feasible in our scenarios with (tens of) thousands
of organisms/genes and much fewer antibiotics/drugs to
experiment with. (B2) Experimentation is typically slow and
expensive, putting natural bounds on how many experiments
can be run. (B3) The cost of an individual experiment
depends on the number of randomized instruments and there
may be limits to how many instruments can be sensibly
combined in one single experiment. For example, too many
drugs, gene knockouts, or antibiotics at once may kill or
permanently damage the studied organism.

Main goal and contributions. Constrained by (B1)-(B3),
we formulate our main goal: Can we select a bounded
number of instruments in a bounded number of sequential
experiments and combine the results for an informative
estimate of a high-dimensional causal effect?1 In answering
this question, we make the following contributions:

• We show that in the underspecified linear IV setting, we
can estimate the orthogonal projection of the causal effect
onto the “instrumented subspace” and construct a

√
n-

consistent, asymptotically normal estimator.

• We combine such estimates from experiments with differ-
ent instruments to consistently recover the estimate had
we randomized all IVs simultaneously (without actually
having to apply all perturbations at once).

• We develop an algorithm that sequentially proposes sub-
sets of the available instruments to maximally identify
the treatment effect from the combined estimate across
all experimental rounds. The algorithm trades off the
information gained from multiple instruments with the
increasing cost of including them in a single experiment
based on a pre-specified similarity between instruments.

• We develop techniques to keep track of which components
of β have been identified reliably at each round, upper
bound the absolute error in unidentified components, and
propose a stopping criterion based purely on observational
data (p(x, y)) that—when reached—guarantees full iden-
tification of β under mild assumptions.

Related work. We build on the theory of (linear) instrumen-
tal variable estimators, with a specific focus on two-stage
methods (Angrist & Pischke, 2008). Instrumental variables

1We highlight that while we call the high-dimensional X the
“treatment”, we experiment (or intervene) on lower-dimensional
instruments Z.

have been used since 1928 by Philip G. Wright (Wright,
1928; Stock & Trebbi, 2003) and are an essential part of
the econometrics toolkit (Angrist & Pischke, 2008). They
have also received renewed interest from the machine learn-
ing community recently (Hartford et al., 2017; Zhang et al.,
2020; Kilbertus et al., 2020; Singh et al., 2019; Bennett
et al., 2019; Padh et al., 2022; Saengkyongam et al., 2022;
Muandet et al., 2019). Despite the difficulty of finding valid
instruments for a given target effect in practice (Hernán &
Robins, 2006), instrumental variable estimation has been
applied successfully in genetics via Mendelian randomiza-
tion (Sanderson et al., 2022; Didelez & Sheehan, 2007) and
recently on microbiome data (Sohn & Li, 2019; Wang et al.,
2020; Ailer et al., 2021).

Our work is also related to ideas in experiment design for
causal structure learning (Hyttinen et al., 2013; Gamella
& Heinze-Deml, 2020; Sussex et al., 2021; Tigas et al.,
2022). Two key differences are that those works focus on
sequential selection of interventions (not just instruments)
and that they seek to identify causal structure (i.e., the causal
graph) instead of a specific causal effect. To the best of our
knowledge, there is no literature on adaptively selecting
instruments in sequential experiments to identify a causal
effect from high-dimensional treatments.

Finally, variants of underspecified instrumental variable set-
tings have been studied by Pfister & Peters (2022). They
assume the causal effect from X on Y to be sparse, which
allows them to relax standard identifiability assumptions in
the linear IV setting. Rothenhäusler et al. (2018) make use
of exogenous variables to provide an estimator that inter-
polates between the ordinary least-squares (OLS) and two
stage least-squares (2SLS) estimates, even when IV assump-
tions are not fully satisfied and point-identification is not
guaranteed. Their proposal can be interpreted as “choosing
the best performing (in terms of mean squared error) esti-
mate among the compatible ones”. Thus, both works pursue
goals orthogonal to ours.

2. Background and Problem Setting
We aim to estimate the causal effect of treatments X ∈ Rdx

on a scalar outcome Y ∈ R. There may be unobserved
confounding between X and Y , but we assume access to
valid instruments Z ∈ Rdz . We focus on the linear setting

X = Zα+ ϵX , Y = Xβ + ϵY , (1)

where α ∈ Rdz×dx and β ∈ Rdx represent the linear struc-
tural functions. We interpret β flexibly as a row or column
vector as needed. Because of unobserved confounding, the
noise variables ϵX , ϵY are typically not independent, but we
assume E[ϵX ] = E[ϵY ] = 0. The standard instrumental vari-
able assumptions (A1)-(A3) become α ̸= 0, Z ⊥⊥{ϵX , ϵY },
and Z ⊥⊥Y | {X, ϵY }.
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Figure 1. The illustration shows the possible experimental settings, including their estimates in a setting with dz = 2, dx = 3: (1) The
experiments with one of the two instruments respectively, denoted by α1 and α2 and (2) - if feasible - with both instruments at once, i.e.
α1/2. In each figure, the true causal effect β (orange) is projected onto the corresponding instrumented spaces, i.e. im(α1), im(α2) and
im(α1/2) (shaded blue) by Pα1β,Pα2β and Pα1/2

β (dashed orange).

Therefore, estimating the causal effect simply corresponds
to estimating β. The OLS estimator for β will be biased,
but if dx ≤ dz and a rank condition on the covariance
of Z and X is satisfied, β is point-identified and can be
estimated consistently, for example via the standard 2SLS
estimator (Angrist & Pischke, 2008). When collecting n
i.i.d. observations in matrices X ∈ Rn×dx , Z ∈ Rn×dz ,
and y ∈ Rn, the 2SLS estimator for β is given by

β̂2SLS = (XTPZX)−1XTPZy , (2)

where PZ = Z(ZTZ)−1ZT is a projection matrix. The
2SLS estimator can be viewed as (a) regressing X on Z,
and (b) regressing Y on the predicted X values from the
first-stage regression. Intuitively, the influence of ϵX on X
is “regressed out” in the first stage, leaving only the direct
causal effect of X on Y in the second stage.

Following traditional application settings, most proposed
IV methods assume the just-identified setting dx = dz (as
well as the rank condition on cov(X,Z), which translates
into a full rank condition on α). Typically, these meth-
ods can also accommodate the overidentified (or overspec-
ified) setting dz > dx. Having many instruments avail-
able in the overspecified setting can also be exploited for
consistent estimators under relaxed assumptions such as
correlated or weak instruments (Hahn & Hausman, 2005;
Kang et al., 2016). In contrast, the underidentified (or un-
derspecified) case dz < dx, where there are fewer instru-
ments than treatments, has received little attention in the
literature. In this case, since rk(PZ) ≤ dz , we have that
rk(XTPZX) ≤ dz < dx and consequently cannot take
the inverse in Equation (2). More generally, in this situa-
tion the causal effect β is not fully identified. However, the
available instruments still constrain the possible values of β.
We will later estimate and exploit those confines.

In our setting, we assume access to a fixed number of NIV ∈
N instruments (e.g., available antibiotics, or drugs) and—in
high-dimensional treatment settings—typically have NIV <

dx. Because we will also consider subsets of instruments,
we generically denote by dz ∈ [NIV] := {1, . . . , NIV}
the number of IVs in a given estimation (or experiment).
Further, we assume experimental access to the instruments
in that we can run experiments in which a chosen set of
instruments is randomized (e.g., in mouse studies or on cell
cultures). Since the specific distribution of Z does not affect
identifiability, we assume without loss of generality that the
components of Z all independently follow a Rademacher
distribution. This can be interpreted as whether a drug or
antibiotic is applied.2 With this choice, α fully characterizes
the effect of Z on X and we consequently also call the rows
of α ∈ RNIV×dx “the instruments”.3 Since the components
of Z are jointly independent, the full rank condition on
cov(X,Z) translates to α having full rank.

To maximally constrain the effect estimate, one would ran-
domize all NIV available instruments simultaneously. Due
to (B3), this is typically infeasible in practice. We model
this via a cost function, which can also incorporate hard
constraints such as limiting the number of instruments per
experiment to at most NIV/exp < NIV. For (B2) we limit the
total number of possible experiments to T ∈ N.

We proceed as follows. In Section 3, we first construct a con-
sistent, asymptotically normal estimator for the orthogonal
projection of β onto the image of α viewed as a linear map
α : Rdz → Rdx . We then establish a method to combine
multiple such estimates obtained from (different) subsets
of IVs to obtain a consistent estimate for the orthogonal
projection of β on the linear subspace spanned by all instru-
ments combined. Furthermore, we introduce a method to
determine which components of β have been successfully
identified and a condition that guarantees full identification

2Other illustrative choices are 1
2

-Bernoulli or the uniform dis-
tribution on a finite interval representing (standardized) dosage
levels. All our results immediately transfer.

3Generically, α ∈ Rdz×dx with dz ≤ NIV represents some
choice of dz instruments in a given estimation/experiment.
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Figure 2. The illustration shows a setting with dz = 2, dx = 3. It
contrasts the single estimation steps with the combination step. Up-
per panel, single estimation: the true causal effect β (orange) is pro-
jected onto the individual instrumented spaces by Pα1β,Pα2β and
Pα1/2

β. Lower panel, combination step: The intersection (dashed
blue line) of the orthogonal complements of {im(α1), im(α2)}
represents all vectors that are compatible with both individual es-
timates. Equation (4) then selects the minimum norm point on
that line. In the illustration it comes to show that the combination
of individual estimators Pα[1,2]

β recovers the effect of the single
estimation with both instruments Pα1/2

β.

of β under mild assumptions. In Section 4, we then lever-
age all these findings to develop a procedure that proposes
subsets of instruments for sequential experimentation to
maximally identify β under the given constraints.

Figure 1 and Figure 2 illustrate the estimation resp. the com-
bination step and the role of linearity in this context visually.
We suggest to consult these illustrations for intuition when
reading the formal statements in the following section.

3. Underidentified IV Estimates
3.1. Estimator for a Single Experiment

Consider a set of instruments α ∈ Rdz×dx with dz < dx and
rk(α) = dz . The predicted treatment values via OLS X̂ =
Z(ZTZ)−1ZTX = PZX ∈ Rn×dx are confined to a
proper linear subspace of Rdx , rendering XTPZX singular
and β̂2SLS in Equation (2) ill-defined in the underspecified
setting. With α̂ being the first-stage OLS estimate, we have
X̂i = Pα̂Xi ∈ im(α̂) := {α̂z | z ∈ Rdz} ⊂ Rdx for all
i ∈ [n], where Pα̂ = α̂T (α̂α̂T )−1α̂ ∈ Rdx×dx denotes
the orthogonal projection onto im(α̂). That is, all first-
stage predictions lie in the image of α̂ and we can consider

the second stage as a mapping Rdx ⊃ im(α̂) → R. We
call im(α̂) the instrumented subspace (in this experiment).
Intuitively, while the low-dimensional Z cannot “shake”
or “instrument” the entire treatment space to identify β,
it still “instruments” a non-trivial subspace, inducing non-
trivial constraints on β. In particular, one may expect to
recover “the part of β within the instrumented subspace”.
The following statement formalizes this intuition.
Proposition 1. Let α ∈ Rdz×dx have full rank and assume
we have i.i.d. data Z,X,y from an experiment in which all
dz instruments have been randomized. Then

P̂αβ := (XTPZX)+XTPZy
d−→ N (Pαβ,Σ) (3)

with Σ := 1
nα

+Σ−1
Z (αT )+ Var[ϵY ] =

1
n (α

Tα)+ Var[ϵY ] ,

where (·)+ denotes the Moore-Penrose pseudoinverse, ΣZ

is the covariance matrix of Z, and the simple form of Σ (in
gray) applies when Z are i.i.d. Rademacher variables.

Proof. For dz ≥ dx, the pseudoinverse in Equation (3) can
be replaced with a regular matrix inverse and the result
follows from the asymptotic normality of β̂2SLS in Equa-
tion (2) (Angrist & Pischke, 2008, Sec. 4.2.1). For the
underspecified case dz < dx, we start with the singular
value decomposition (SVD) X̂ = UDV T , with which
X̂T X̂ = V DTDV T . Assuming that the singular val-
ues in the rectangular diagonal matrix D ∈ Rn×dx are
sorted in non-ascending order, only the first dz entries are
nonzero, because rk(X̂) = dz . Accordingly, the first dz
rows of V form an orthonormal basis of im(α). We write
Vα̂ ∈ Rdx×dz for the first dz columns of V , Dα̂ ∈ Rdz×dz

for the upper left dz × dz block of D, and Uα̂ ∈ Rn×dz for
the first dz columns of U . With X̂ = PZX we compute

P̂αβ = (XTP T
ZPZX)+XTP T

ZPZ(Xβ + ϵY )

= (X̂T X̂)+(X̂T X̂β + X̂T ϵY )

= V (DTD)+DTDV Tβ + V (DT )+UT ϵY

= Vα̂V
T
α̂ β + Vα̂D

−1
α̂ UT

α̂ ϵY ,

where we have used

(DTD)+DTD =

(
Idz×dz 0dz×(dx−dz)

0(dx−dz)×dz
0(dx−dz)×(dx−dz)

)
.

From the asymptotic normality of the first-stage OLS es-
timate α̂, it follows that Vα̂ and Dα̂ are

√
n-consistent

estimators for Vα and Dα respectively (Bura & Pfeiffer,
2008). Therefore, Pα̂ = Vα̂V

T
α̂ converges in probability to

Pα in the large sample limit. With E[ϵY ] = 0 we thus have

E[P̂αβ] = E[Vα̂V
T
α̂ ]β

p−→ Pαβ .

Similarly, with X̂ = Zα̂ we compute the covariance

Cov[P̂αβ] = Cov[Vα̂D
−1
α̂ UT

α̂ ϵY ] = X̂+(X̂T )+ Var[ϵY ]

= α̂+(ZTZ)−1(α̂T )+ Var[ϵY ] .
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Since the matrix inverse is continuous (on invertible ma-
trices), the continuous mapping theorem yields that Σ̂−1

Z

consistently estimates Σ−1
Z . Again using the asymptotic nor-

mality of α̂, we thus have (for centered) Cov[P̂αβ]
p−→

1
nα

+Σ−1
Z (αT )+ Var[ϵY ]. For i.i.d. Rademacher instru-

ments with covariance matrix ΣZ = Idz×dz
we have

Cov[P̂αβ]
p−→ 1

n (α
Tα)+.

Proposition 1 substantiates the first intuition that in the
underidentified setting we can still consistently estimate the
orthogonal projection of β onto the instrumented subspace.

We refer to Figure 1 for an illustration of the estimation in a
linear setting with dz = 2, dx = 3, T = 2. For visualization
purposes, we choose axis-aligned α1 = (1, 0, 0) and α2 =
(0, 1, 0). For both instruments, we estimate the projection
of β onto the respective instrumented spaces (Pα1

β and
Pα2

β). The illustration on the right hand side also includes
the estimation which uses both instruments (α1/2) at once.
In the following, this is the effect we want to recover solely
based on the individual estimates.

3.2. Combined Estimator

In sequential experiments, we select pairwise disjoint instru-
ments α1, α2, . . . , αT , where each αi is a subset of the NIV

available ones. Each corresponding individual estimator
P̂α1

β, P̂α2
β, . . . , P̂αT

β estimates an orthogonal projection
of β onto the linear subspace im(α̂i). Our goal is to recon-
struct the estimate we would have obtained, had we used
all instruments in the sequential experiments at once in a
single one. Denoting the union (or concatenation) of all
available instruments by a single matrix α[T ], we aim to re-

construct Pα[T ]
β from the individual P̂αiβ.4 In other words,

we are looking for the least-square vector compatible with
all projections

min
γ∈Rdx

∥γ∥22 s.t. P̂αi
β = Vα̂i

V T
α̂i
γ for all i ∈ [T ] . (4)

Proposition 2. Let α ∈ RNIV×dx have full rank and let
(Z1,X1,y1), . . . , (ZT ,XT ,yT ) be i.i.d. datasets from T
experiments with disjoint subsets α1, . . . , αT of random-
ized instruments. Then the solution of Equation (4) is a
consistent estimator for Pα[T ]

β.

Proof. Let A := Vα̂[T ]
V T
α̂[T ]

= (Vα̂1V
T
α̂1
| . . . |Vα̂T

V T
α̂T

) ∈
R(Tdx)×dx and b := (P̂α1

β, . . . , P̂αT
β) ∈ RTdx , where “|”

denotes concatenation. Then the solution to Equation (4)
is simply A+b, i.e., the least-squares solution to Aγ = b.
Hence the optimal γ is the orthogonal projection of b onto
im(A), which by construction is just im(α̂[T ]). By the

4We use similar notation α̂[t] for the concatenation of the in-
struments (as matrices) used up until and including round t.

consistency of α̂i (and thus the consistency of A and b for
their respective expressions without hats as in the proof of
Proposition 1), asymptotically A+b

p−→ Pα[T ]
β.

Note that the instrument sets need not be disjoint for the
proof of Proposition 2. However, since we do not gain fur-
ther information by including the same instrument in two
distinct experiments, which would instrument the same sub-
space twice, it is reasonable to keep instrument sets distinct
across experiments for efficiency. The least-squares problem
with linear equality constraints in Equation (4) can be solved
efficiently (in high dimensions and for many constraints) by
simply solving a linear system (Nocedal & Wright, 2006,
Sec. 16.1). In practice, we keep a running estimate P̂α[t]

β,
which is the combined estimate for all experiments up to
and including round t ∈ [T ]. Being able to combine es-
timates from individual sets of instruments “as if we had
run a single experiment using the union of instruments at
once” forms the basis for leveraging sequential experiments
with different sets of randomized instruments to optimally
constrain the overall causal effect in Section 4.

3.3. Full Identification and Identified Components

Full identification. As an interesting special case of Propo-
sition 1, we note that regardless of dx, a single instrument
dz = 1 in principle suffices to identify β ∈ Rdx , namely
when α ∈ Rdx×1 is parallel to β (viewed as vectors in Rdx ),
which implies Pαβ = β. Of course, this is unlikely to “hap-
pen accidentally” in practice. However, it highlights that
if we had full control over the instruments, we could fully
identify β by crafting α ∈ Rdx×1 such as to maximize the
2-norm of the resulting estimated P̂αβ. This can be seen
from the fact that ∥Pαβ∥2 ≤ ∥β∥2 for any α with equality
implying β ∈ im(α). Therefore, when running sequential
experiments, the 2-norm of the combined estimate is a proxy
for whether we are still gaining relevant information. We
summarize these results in the following Corollary.

Corollary 3. In the setting of Proposition 1, the following
are equivalent: (i) β ∈ im(α); (ii) ∥P̂αβ∥2 −→ ∥β∥2 as
n→∞; (iii) P̂αβ consistently estimates β (not just Pαβ).

In our underspecified setting, it is generally impossible to
determine whether any (and therefore all) of the statements
in Corollary 3 hold true. However, recently Janzing &
Schölkopf (2018) have shown that under mild assumptions
on the confounding model (i.e., on the joint distribution of
ϵX , ϵY ), one can estimate what they call the confounding
strength. Their estimator has been further refined by Rends-
burg et al. (2022). The confounding strength can then be
leveraged to estimate ∥β∥2 itself from purely observational
data (Janzing, 2019). This means that we can consistently
estimate ∥β∥2 from data (X,y), where no instruments have
been randomized in our setting (Janzing, 2019, step 5 in
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Alg. ConCorr).5 Let us denote this estimator by ∥̂β∥2. We
outline the assumptions on the confounding model, which
are satisfied in our empirical evaluation, in Section 5.

Following Corollary 3 we can use the difference of the
2-norm of our running estimate ∥P̂α[t]

β∥2 and ∥̂β∥2 as a
heuristic for whether we have already fully identified β, i.e.,
whether the overall instrumented subspace contains β.6 In
future work, with the asymptotic normality of P̂αβ in Propo-
sition 1 and thus an explicit expression for the asymptotic
distribution of ∥P̂αβ∥22 (Moschopoulos, 1985) as well as the
asymptotic behavior of ∥̂β∥2 in Rendsburg et al. (2022), one
could derive (asymptotic) confidence intervals for whether
||P̂α[t]

β|| = ∥̂β∥2. In practice, we propose∣∣∣∥̂β∥2 − ∥P̂α[t]
β∥2

∣∣∣ < ϵ (5)

for a fixed tolerance ϵ > 0 as a stopping criterion of our
algorithm. When this condition is reached, we can conclude
(for sufficiently large n) that β is near fully identified, even
though we may have used fewer than dx instruments.

Identified components. When the above stopping crite-
rion is not reached within our T rounds of experimentation,
learning an orthogonal projection of β may still be informa-
tive in itself. However, in many situations one is interested
in precise values of individual components βi for i ∈ [dx].
Notably, when β /∈ im(α), the individual components of
Pαβ are not easily interpretable. For example, neither holds
(Pαβ)i = 0⇒ βi = 0 nor the other way round. Therefore,
we now devise a method to determine when we can trust
any given component of our running estimate P̂α[t]

β.

Corollary 4. Let (ei)i∈[dx] be the standard basis of Rdx . In
the setting of Proposition 2, when Vα[t]

V T
α[t]

ei = ei, then

(P̂α[t]
β)i consistently estimates βi.

Proof. This follows from Proposition 2 and the linearity of
projections when considering β =

∑dx

i=1 βiei.

We note that we already compute Vα̂t
at each round as part

of P̂αtβ. Since Vα̂[t]
V T
α̂[t]

p−→ Pα[t]
, the check for identi-

fied components in Corollary 4 can therefore be performed
efficiently in practice by checking for (approximate) equal-
ity of Vα̂[t]

V T
α̂[t]

ei ≈ ei. In our empirical evaluation, we
use the absolute value of the cosine similarity, denoted by
cdist, between the two vectors as a continuous measure

5Since we assume experimental access, we can also collect
purely observational (X,Y ) data about the system of interest.

6Recall that the 2-norm of an orthogonal projection of β is al-
ways smaller or equal to the 2-norm of β. This provides additional
motivation for why we choose to combine estimates according to
Equation (4) using a minimum 2-norm objective.

for whether βi has been identified. As an aggregate metric,
we report the percentage of identified components

1
dx

∣∣∣{i ∈ [dx] |cdist(Vα[t]V
T
α[t]ei, ei) < δ}

∣∣∣ (6)

for some fixed tolerance δ > 0.

Finally, we can estimate an upper bound on the absolute
error in each non-identified component. Let β = Pαβ + ν
be the orthogonal decomposition of β into the instrumented
subspace im(α) and its orthogonal complement. Since
∥β∥22 = ∥Pαβ∥22 + ∥ν∥22 and |νi| ≤ ∥ν∥2 for all com-
ponents i ∈ [dx], we have

|νi| ≤
√
∥β∥22 − ∥Pαβ∥22 for all i ∈ [dx] . (7)

With our consistent estimates ∥̂β∥2 and P̂αβ, we can thus
upper bound all remaining unidentified components.

We return now to Figure 2 which illustrates the estimation
(upper panel) and combination steps (lower panel) in our
linear setting for dz = 2, dx = 3, T = 2. For both instru-
ments, we estimate the projection of β onto the respective
instrumented spaces (Pα1

β and Pα2
β), including the ef-

fect Pα1/2
β which is the one that should be recovered. In

the lower panel, the two planes are the orthogonal com-
plements of the instrumented spaces and their intersection
corresponds to all vectors that are compatible, i.e., would be
projected onto im(α1) and im(α2) respectively. This cor-
responds to the constraints in Equation (4). Among those,
we then select the vector with the smallest norm as our com-
bined estimate. The figure both illustrates the necessity of
linearity for the combination of estimates and the increasing
norm of the combined estimate converging to ∥β∥.

4. Sequential Selection of Instruments
At each step t ∈ [T ], we seek to select the most infor-
mative subset of instruments αt out of the pool of NIV

available choices. After each round we combine the newly
obtained estimate P̂αtβ with all previous ones to obtain
P̂α[t]

β. Regarding consideration (B3), we assume a cost
function c : [NIV] → R≥0, where c(dz) is the cost of run-
ning a single experiment with dz randomized instruments.
For instance, this may be the actual monetary and logis-
tic cost of randomly administering the selected drugs to a
collection of n cell cultures (Z), sequencing the cells (X),
and measuring the outcome of interest (y) for each culture.
However, the cost may also incorporate a hard limit NIV/exp

on the number of instruments that can sensibly be combined
in a single experiment (e.g., without killing the organism),
by setting c(d) =∞ for d > NIV/exp.

In light of Equation (5), the ultimate goal is to select in-
struments that maximize ∥P̂α[T ]

β∥2. However, in round t

6
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we cannot anticipate by how much ∥P̂α[t−1]
β∥2 is going

to increase for a candidate set of instruments αt without
actually performing the experiment. Therefore, we must
rely on another signal to sequentially select subsets of in-
struments. Without any information about the available
instruments, we cannot do better than selecting instruments
(uniformly) at random at each step. While in practice one
may not have precise information about the actual effects
of individual instruments, information about the similarity
of different antibiotics or drugs is typically still available.
For example, certain antibiotics may have related active
agents (high similarity) or certain drugs may target simi-
lar pathways (high similarity). We assume that pairwise
normalized similarities simi,j ∈ [0, 1] are provided for all
available instruments i, j ∈ [NIV]. Here, simi,j = simj,i

and simi,i = 1. Such similarities could also be derived from
a set of features known about the instruments. To optimally
explore the treatment space, it is then natural to attempt to
sequentially select highly dissimilar instruments.

Hence, to evaluate the expected gain of adding a new set
of instruments I ⊂ [NIV] to the already used instruments
J ⊂ [NIV], we define the following gain function

gain : 2[NIV] × 2[NIV] → R≥0 , (8)

(I,J ) 7→ 1

|I|+ |J | − 1

∑
i∈I

∑
j∈I∪J

(1− simi,j) .

This takes into account the similarities of the newly pro-
posed instrument set within itself as well as with respect to
the previously used ones. For example, when all instruments
are maximally dissimilar (simi,j = δi,j), gain(I,J ) = |I|
regardless of J . When all instruments are equal (simi,j =
1), gain(I,J ) = 0 for all inputs. Finally, we define the
score of the set I when the set J has already been used by

score(I,J ) := gain(I,J )− c(|I|) . (9)

These considerations lead to the following setting. At each
round t, we select a subset It ⊂ [NIV] \ I[t−1] of still un-
used instruments that maximize the score function given the
already used instruments. We run a randomized experiment
with those instruments to collect data, estimate (a projection
of) β from this data (Proposition 1), and combine the esti-
mate with the previous ones (Proposition 2). By convention,
we have I[0] = I∅ = ∅ and we overload terminology to
call both αt ∈ R|It|×dx and It ⊂ [NIV] “the instruments
selected at round t”. We similarly use α[t] and I[t] for the
instruments selected up to (and including) round t. When
the stopping criterion (Equation (5) is satisfied, we return
our current estimate as an estimate of the full β. Otherwise,
we return the estimate after T experiments together with the
identified components (Corollary 4). We outline our sequen-
tial instrument selection (SIS) procedure in Algorithm 1.

We remark that since gain(I,J ) ≤ |I| it makes sense to

use a sublinear cost function (until a potential hard limit
NIV/exp). Intuitively, while it becomes more expensive to in-
clude multiple randomized variables in a single experiment,
it is still cheaper than running an individual randomized ex-
periment for each instrument separately. The precise choice
of the cost function is informed by the actual experimental
setting and determines the trade-off between randomizing
many instruments at once (to increase the dimensionality of
the instrumented subspace) and the cost of doing so.

Algorithm 1 Sequential selection of instrument sets
Require: maximum rounds T , pairwise similarities sim ∈

[0, 1]NIV×NIV , cost function c, tolerance ϵ > 0

1: collect observational data X,y

2: compute ∥̂β∥2 from X,y ▷Janzing (2019, ConCorr)
3: C ← ∅ ▷set of identified components
4: for t ∈ [T ] do ▷experimental rounds
5: It ← argmaxI⊂[NIV]\I[t−1]

score(I, I[t−1])

6: collect Zt,Xt,yt ▷run experiment with It
7: P̂αt

β ← (XT
t PZt

Xt)
+XT

t PZt
yt ▷Proposition 1

8: P̂α[t]
β ← argminγ∈Rdx ∥γ∥2 ▷Proposition 2

s.t. P̂ατβ = Vα̂τV
T
α̂τ

γ for all τ ∈ [t]

9: if |∥P̂α[t]
β − ∥̂β∥2| < ϵ then ▷fully identified, (5)

10: C ← [dx]

11: return P̂α[t]
β, C

12: C ← {i ∈ [dx] |Vα̂[t]
V T
α̂[t]

ei ≈ ei} ▷Corollary 4

13: return P̂α[T ]
β, C ▷estimate, identified components

5. Empirical Evaluation
Setup. Since a real-world evaluation of our approach would
require access to sequential randomized experimentation in
a complex setting, we are restricted to simulation studies.
We first illustrate the properties of our proposed (combined)
causal effect estimators in the underspecified IV setting
and then evaluate our full sequential instrument selection
method. We generate the parameters α, β randomly (Ap-
pendix A) in order to avoid parameter selection bias. Next,
we fix a mixing matrix M ∈ Rdx×dx with all entries sam-
pled from independent standard Gaussians as well as a
direction v ∈ Rdx as a uniform sample from the sphere
Sdx−1. In Equation (1), we then sample instrument compo-
nents independently from a Rademacher distribution, and
set ϵX = Me, ϵY = vT e with all components of e ∈ Rdx

sampled independently from standard Gaussians for each
sample. This confounding model satisfies the assumptions
required to estimate ∥̂β∥2 (Janzing & Schölkopf, 2018; Janz-
ing, 2019; Rendsburg et al., 2022). Loosely speaking, the
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Figure 3. Estimates of β over 500 runs with dz = dx = 3 (top)
and dz = 3 and dx = 10 (bottom). The dotted lines are the true
β and boxplots show the median (horizontal line), first and third
quartile (box height) and 10/90 percentiles (whiskers).

confounder affects both the treatment and the outcome as (in-
dependent) random mixtures of the same independent noise
sources. We ensure in our data generation that β ∈ im(α).
Hence, β can be recovered fully in principle. Moreover, we
also guarantee that there is a subset of less than NIV/exp · T
instruments that suffices to fully identify β (see Appendix A
for details). Therefore, even if we cannot use all instruments
throughout the experiments (NIV/exp · T < NIV) a good
selection algorithm can in principle fully identify β.

For the similarities between instruments, in our experi-
ments we take the absolute value of the cosine distance
simi,j = |αT

i αj |/(∥αi∥2∥αj∥2). Crucially, we thereby do
not assume access to α—only the similarities enter the algo-
rithm. While in a given application, the similarities would
be provided by practitioners and domain experts, in our sim-
ulated study we have to choose some similarity measure that
is informed by α. We account for uncertainties in the pro-
vided similarities by computing them on a noisy version of
α, where we add independent standard Gaussian noise to all
entries. For the cost function we choose c(d) = log(d) for
d ≤ NIV/exp and c(d) = ∞ otherwise, effectively limiting
the maximum number of instruments per round to NIV/exp.
While pairwise similarities can help the sequential selection
to converge quickly, we note that our findings from Sec-
tion 3 are extremely useful for the (often strong) baseline of
selecting instruments randomly.

Finite sample properties of our estimators. We first em-
pirically analyze the finite sample behavior of our estimators
from Propositions 1 and 2. For illustration, Figure 3 shows
a setting with dx = dz = 3 on the upper panel and dx = 10,
dz = 3 on the lower panel. The x-axis shows component
indices of β ∈ Rdx (component 0 is the offset); dotted lines
are the ground truth values of β, and boxplots show distribu-
tion of estimated values (P̂αβ) over 500 random seeds. We
compare three different estimators. IdealEx randomizes all

three available instruments simultaneously and shows the
single estimate (from Proposition 1). TwoEx combines (via
Proposition 2) two individual estimates using only the first
two and the last instrument, respectively. ThreeEx combines
three individuals estimates, obtained by randomizing each
of them separately. Figure 3 shows that all methods cor-
rectly identify all three components of β (plus the offset) on
average with low variance in the low-dimensional dx = 3
setting. The dx = 10 setting (lower panel) in which 3 instru-
ments suffice for full identification, shows similar results
for all components. Even though the variance increases
compared to the lower-dimensional setting, estimates are
still consistent. All details are provided in Appendix A.

Sequential instrument selection. For our instrument selec-
tion algorithm we compare the following methods. IdealEx:
the hypothetical ideal where all instruments are used at once
in a single experiment. Random: a baseline that selects one
of the allowed (smaller or equal NIV/exp) subsets uniformly
at random from the remaining instruments at each round.
Sequential Instrument Selector (SIS): our Algorithm 1. We
remark that the random baseline, to its advantage, does not
respect the cost per experiment, but is allowed to select the
maximum number of possible instruments in each round.

We set dz = 30, did = 15 and use two different treatment
dimensions dx = 50 and dx = 150. Further, we allow
NIV/exp = 3 instruments per round with a total budget of
T = 6 experimental rounds. Note that NIV/exp · T ≤ did,
i.e., the algorithm has the budget to fully identify β.

In Figure 4 (left) we show boxplots of the mean squared
error (MSE) of our estimates for the nonzero components
after each optimization round. SIS outperforms the random
baseline in terms of MSE. Additionally, each boxplot in the
lower panel shows the percentage of uncertain components
from Equation (6) for δ = 0.3. In Figure 4 (right), the
norm of our estimator ||P̂αβ|| converges towards the norm
of the actual β (and its estimate ∥̂β∥2), i.e., the stopping
criterion is reached. Figure 5 compares these estimates
for the nonzero components of β after the last round of
experiments. Our greedy optimization indeed identifies
each of the components just as well as the hypothetical ideal
of a single experiment that uses all instruments at once.
Empirically, the finite sample properties remain unaffected
by our combination procedure. We refer to Appendix B for
results on a dx = 150 setting.

6. Conclusion
In this work we made multiple contributions aiming at infer-
ring causal effects of high-dimensional treatments under un-
observed confounding by sequential experimentation, where
we cannot intervene on the treatments directly, but can only
randomize instruments. We proposed consistent, asymptoti-
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Figure 4. Results for the sequential selection of instruments with dz = 30, did = 15, NIV/exp = 3, T = 6 and dx = 50: each boxplot
shows the median and mean (solid resp. dashed line), first and third quartile (box height) and 10/90 percentiles (whiskers) over nruns = 250.
Left: The upper panel shows the of squared error P̂α[t]

β − β over rounds t ∈ {1, . . . , 6}. The lower panel shows the corresponding

percentages of unidentified components. Right: The ||P̂α[t]β|| increases for t ∈ {1, . . . , 6} approaching |̂|β|| (dotted orange line), which
perfectly estimates the true ∥β∥ in this case (dotted black line).
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Figure 5. Results for the sequential selection of instruments with dz = 30, did = 15, NIV/exp = 3, T = 6 and dx = 50: each boxplot
shows the median and mean (solid resp. dotted line), first and third quartile (box height) and 10/90 percentiles (whiskers) over nruns = 250
after the last round T = 6. Top: estimates of the nonzero components of β with the black dotted line being ground truth. Bottom:
distribution of cosine similarities in Equation (6) for each component.

cally normal estimators for the orthogonal projection of a
treatment effect onto the instrumented subspace in the linear
setting and introduced a method to consistently combine
such estimates from separate experiments. Surprisingly, nei-
ther the (perhaps intuitive) estimator in Proposition 1, nor
the geometric intuition around instrumented subspaces in
the underspecified setting can be found in existing literature.
These estimators may be of independent interest as a con-
tribution to the largely ignored underspecified IV setting.
We then developed an algorithm to sequentially propose
subsets of instruments from a given pool that flexibly trades
off the expected information gain (informed by provided
similarities) with the cost of each experiment. Moreover,
we integrated a stopping criterion for when the sequential
selection has fully identified the causal effect, a method to
keep track of all components that are consistently estimated,
and an upper bound on the absolute error of unidentified
components: these additions inform the practitioner about
whether (and which parts) of the estimate can be trusted.

The linearity assumption may appear restrictive. However,
the linear IV setting is still heavily used in econometrics
and health, as it reliably captures dominant effects even in
noisy settings, and still attracts attention with novel results
recently (Pfister & Peters, 2022; Rothenhäusler et al., 2018).
The thorough theoretical understanding developed in this

work is a challenging and necessary foundation for exper-
iment design via instrument selection. Extensions of our
method and of our notion of the instrumented subspace to
(certain) non-linear settings is an important direction for
future work. A second limitation of our work is inherent
to the problem setting: missing real-world experiments due
to a lack of access to the required expensive, specialized
facilities. Finally, we highlight that independent testing and
verification is paramount when using algorithmically ob-
tained insights to inform consequential decisions such as
actual clinical treatment decisions.

Code. The implementation as well as experi-
mental details are publicly available on Github:
https://github.com/EAiler/underspecified-iv.
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A. Details of Experiments
Data Generation The data generation process follows the model described in (Janzing & Schölkopf, 2018). We adopt
their data setup in order to estimate |̂|β|| consistently:

X = Zα+ ϵX , Y = Xβ + ϵY , (10)

ϵX and ϵY are confounded via the common variable e.

ϵX = eM , ϵY = ev , (11)

with Z ∼ Rademacher(0.5) and e ∼ N (0, Idl).

Scenario Generation. For each figure, i.e. simulation, we generate random scenarios in order to avoid introducing
involuntary bias in the parameter setting.

Each generated scenario is based on a seed and the constants n, dx, dz and did, i.e. the number of instruments it will take to
identify the causal effect in full. Further, we assume dx = l, i.e. M ∈ Rdx×dx . Note that this choice is based on the setting
in the simulation studies of (Janzing & Schölkopf, 2018).

We sample did nonzero components of αj , j ∈ {1, ..., d} and the did nonzero components of β from a uniformly distributed
random variable U(−5.0, 5.0). The sparsity is introduced by setting the remaining components to 0.0. Our motivation
for this choice is to reliably generate a setup for which we are guaranteed to identify the causal effect by a maximum of
did instruments. In addition to did identifying instruments, we generate d− did further instruments by picking two of the
necessary instruments on top of which we add a p-dimensional Gaussian noise. Overall, we end up with did − 2 necessary
instruments and two clusters from which we can pick any instrument in order to identify the remaining components of β.
For the confounder we sample all entries of M ∈ Rdx×dx from independent standard Gaussians and the direction v ∈ Rdx

as a uniform sample from the sphere Sdx−1.

Scenario Generation for Figure 3. For showcasing the finite sample properties of our estimator, we sampled from the
scenario generation above with seed 253 and dz = 3 and dx = 3 resp. dx = 10. This choice of parameters left us with two
settings (1) being just-identified dz = dx = 3 and (2) being underspecified dz = 3, dx = 10. Moreover, we set β to only
have 3 non-zero components in order to be able to identify the causal effect in full. Note that this choice is for illustration
purpose and does not affect the method’s applicability in a setting where we can only identify parts of the causal effect.
However, in those setting where some βi-components are not part of the instrumented subspace im(α), full causal recovery
is in general impossible.

B. Additional Experiments
In the optimization we compare the baseline which uses all instruments at once (IdealEx) to the developed sequential
optimization routine (SIS) and the random baseline. We include results for the same setting as Figure 4 and Figure 5, except
with an increased treatment dimension, i.e. dx = 150 in Figure 6:

dx = 150, dz = 30, did = 15, NIV/exp = 3, T = 6

Moreover, it might not always be the case that the stopping criterion in (Janzing & Schölkopf, 2018) works as nicely as in
the previous scenarios, see Fig. Figure 7 with parameter setting:

dx = 50, dz = 30, did = 20, NIV/exp = 4, T = 6
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Figure 6. Results for the sequential selection of instruments with dz = 30, did = 15, NIV/exp = 3, T = 6 and dx = 150: each boxplot
shows the median and mean (solid resp. dashed line), first and third quartile (box height) and 10/90 percentiles (whiskers) over nruns = 250.
Top Left: The upper panel shows the of squared error P̂α[t]

β − β over rounds t ∈ {1, . . . , 6}. The lower panel shows the corresponding
percentages of unidentified components. As we are in the scenario with p = 150, we would need to adjust the threshold δ = 0.3 to a
higher value. Top Right: The ||P̂α[t]β|| increases for t ∈ {1, . . . , 6} approaching |̂|β|| (shaded orange block), which does not perfectly
estimate the true ∥β∥ in this case (dotted black line), but performs still reasonably well. Bottom: Upper Panel: estimates of the nonzero
components of β with the black dotted line being ground truth. Lower Panel: distribution of cosine similarities in Equation (6) for each
component.
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Figure 7. Results for the sequential selection of instruments with dz = 30, did = 20, NIV/exp = 4, T = 6 and dx = 50: each boxplot
shows the median and mean (solid resp. dashed line), first and third quartile (box height) and 10/90 percentiles (whiskers) over nruns = 250.
Top Left: The upper panel shows the of squared error P̂α[t]

β − β over rounds t ∈ {1, . . . , 6}. The lower panel shows the corresponding

percentages of unidentified components. Top Right: The ||P̂α[t]β|| increases for t ∈ {1, . . . , 6} approaching |̂|β|| (shaded orange block),
which does not perfectly estimate the true ∥β∥ in this case (dotted black line), but performs still reasonably well. Bottom: Upper Panel:
estimates of the nonzero components of β with the black dotted line being ground truth. Lower Panel: distribution of cosine similarities in
Equation (6) for each component.
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