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Abstract 
Instrumental variable methods provide a power­
ful approach to estimating causal effects in the 
presence of unobserved confounding. But a key 
challenge when applying them is the reliance on 
untestable “exclusion” assumptions that rule out 
any relationship between the instrument variable 
and the response that is not mediated by the treat­
ment. In this paper, we show how to perform con­
sistent instrumental variable estimation despite 
violations of the exclusion assumption. In particu­
lar, we show that when one has multiple candidate 
instruments, only a majority of these candidates— 
or, more generally, the modal candidate–response 
relationship—needs to be valid to estimate the 
causal effect. Our approach uses an estimate 
of the modal prediction from an ensemble of in­
strumental variable estimators. The technique is 
simple to apply and is “black-box” in the sense 
that it may be used with any instrumental vari­
able estimator as long as the treatment effect is 
identified for each valid instrument independently. 
As such, it is compatible with recent machine-
learning based estimators that allow for the esti­
mation of conditional average treatment effects 
(CATE) on complex, high dimensional data. Ex­
perimentally, we achieve accurate estimates of 
conditional average treatment effects using an 
ensemble of deep network-based estimators, in­
cluding on a challenging simulated Mendelian 
randomization problem. 

1. Introduction 

Instrumental variable (IV) methods are a powerful approach 
for estimating treatment effects: they are robust to unob­
served confounders and they are compatible with a variety 
of flexible nonlinear function approximators (see e.g. Newey 
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& Powell, 2003; Darolles et al., 2011; Hartford et al., 2017; 
Singh et al., 2019; Bennett et al., 2019; Muandet et al., 2020; 
Dikkala et al., 2020), thereby allowing nonlinear estimation 
of heterogeneous treatment effects. 

In order to use an IV approach, one must make three assump­
tions. The first, relevance, asserts that the treatment is not 
independent of the instrument. This assumption is relatively 
unproblematic, because it can be verified with data. The sec­
ond assumption, unconfounded instrument, asserts that the 
instrument and outcome do not share any common causes. 
This assumption cannot be verified directly, but in some 
cases it can be justified via knowledge of the system; e.g. 
the instrument may be explicitly randomized or may be the 
result of some well understood random process. The final 
assumption, exclusion, asserts that the instrument’s effect 
on the outcome is entirely mediated through the treatment. 
This assumption is even more problematic; not only can it 
not be verified directly, but it can be very difficult to rule 
out the possibility of direct effects between the instrument 
and the outcome variable. Indeed, there are prominent cases 
where purported instruments have been called into ques­
tion for this reason. For example, in economics, the widely 
used “judge fixed effects” research design (Kling, 2006) 
uses random assignment of trial judges as instruments and 
leverages differences between different judges’ propensities 
to incarcerate to infer the effect of incarceration on some 
economic outcome of interest (see Frandsen et al., 2019, 
for many recent examples). Mueller-Smith (2015) points 
out that exclusion is violated if judges also hand out other 
forms of punishment (e.g. fines, a stern verbal warning 
etc.) that are not observed. Similarly, in genetic epidemiol­
ogy, “Mendelian randomization” (Davey Smith & Ebrahim, 
2003) uses genetic variation to study the effects of some 
exposure on an outcome of interest. For example, given ge­
netic markers that are known to be associated with a higher 
body mass index (BMI), we can estimate the effect of BMI 
on cardiovascular disease. However, this only holds if we 
are confident that the same genetic markers do not influence 
the risk of cardiovascular disease in any other ways. The 
possibility of such “direct effects”—referred to as “horizon­
tal pleiotropy” in the genetic epidemiology literature—is 
regarded as a key challenge for Mendelian randomization 
(Hemani et al., 2018). 

It is sometimes possible to identify many candidate instru­
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ments, each of which satisfies the relevance assumption; in 
such settings, demonstrating exclusion is usually the key 
challenge, though in principle unconfounded instrument 
could also be a challenge. For example, many such can­
didate instruments can be obtained in both the judge fixed 
effects and Mendelian randomization settings, where indi­
vidual judges and genetic markers, respectively, are treated 
as different instruments. Rather than asking the modeler 
to gamble by choosing a single candidate about which to 
assert these untestable assumptions, this paper advocates 
making a weaker assumption about the whole set of can­
didates. Most intuitively, we can assume majority validity: 
that at least a majority of the candidate instruments satisfy 
all three assumptions, even if we do not know which candi­
dates are valid and which are invalid. Or we can go further 
and make the still weaker assumption of modal validity: that 
the modal relationship between instruments and response 
is valid. Observe that modal validity is a weaker condition 
because if a majority of candidate instruments are valid, the 
modal candidate–response relationship must be character­
ized by these valid instruments. Modal validity is satisfied 
if, as Tolstoy might have said, “All happy instruments are 
alike; each unhappy instrument is unhappy in its own way.” 

This paper introduces ModeIV, a robust instrumental vari­
able technique. ModeIV allows the estimation of nonlin­
ear causal effects and lets us estimate conditional average 
treatment effects that vary with observed covariates. It is 
simple to implement—it involves fitting an ensemble with a 
modal aggregation function—and is black-box in the sense 
that it is compatible with any valid IV estimator, which al­
lows it to leverage any of the recent machine learning-based 
IV estimators. Despite its simplicity, ModeIV has strong 
asymptotic guarantees: we show consistency and that even 
on a worst-case distribution, it converges point-wise to an 
oracle solution at the same rate as the underlying estimators. 
We experimentally validated ModeIV using both a modified 
version of the demand simulation from Hartford et al. (2017) 
and a more realistic Mendelian randomization example mod­
ified from Hartwig et al. (2017). In both settings—even with 
data with a very low signal-to-noise ratio—we observed 
ModeIV to be robust to exclusion-restriction bias and accu­
rately recovered conditional average treatment effects. 

2. Related Work 

Background on Instrumental Variables We are inter­
ested in estimating the causal effect of some treatment vari­
able, t, on some outcome of interest, y. The treatment effect 
is confounded by a set of observed covariates, x, and un­
observed confounding factors, ✏, which affect both y and t. 
With unobserved confounding, we cannot rely on condition­
ing to remove the effect of confounders; instead we use an 
instrumental variable, z, to identify the causal effect. 

Instrumental variable estimation can be thought of as an 
inverse problem: we can directly identify the causal1 effect 
of the instrument on both the treatment and the response be­
fore asking the inverse question, “what treatment–response 
mappings, f : t ! y, could explain the difference be­
tween these two effects?” The problem is identified if this 
question has a unique answer. If the true structural relation­
ship is of the form, y = f(t, x) + ✏, one can show that, 
E[y|x, z] =  

R 
f(t, x)dF (t|x, z), where E[y|x, z] gives 

the instrument–response relationship, F (t|x, z) captures 
the instrument–treatment relationship, and the goal is to 
solve the inverse problem to find f(·). In the linear case, 
f(t, x) = ft + 1x, so the integral on the right hand side of 
reduces to fE[t|x, z]+1x and f can be estimated using lin­
ear regression of y on the predicted values of t given x and 
z from a first stage regression. This procedure is known as 
Two-Stage Least Squares (Angrist & Pischke, 2008). More 
generally, the causal effect is identified if the integral equa­
tion has a unique solution for f (Newey & Powell, 2003). 

Nonlinear IV A number of recent approaches have lever­
aged this additive confounders assumption to extend IV 
analysis beyond the linear setting. Newey & Powell (2003) 
and Darolles et al. (2011) proposed the first nonparametric 
procedures for estimating these structural equations, based 
on polynomial basis expansions. These methods relax the 
linearity requirement, but scale poorly in both the number of 
data points and the dimensionality of the data. To overcome 
these limitations, recent approaches have adapted deep neu­
ral networks for nonlinear IV analyses. DeepIV (Hartford 
et al., 2017) fits a first-stage conditional density estimate of 
F̂ (t|x, z) and uses it to solve the above integral equation. 
Both Bennett et al. (2019) and Dikkala et al. (2020) adapt 
generalized method of moments (Hansen, 1982) to the non­
linear setting by leveraging adversarial losses, while Singh 
et al. (2019) and Muandet et al. (2020) propose kernel-based 
procedures for estimation using two-stage and dual formula­
tions of the problem, respectively. Puli & Ranganath (2020) 
showed conditions that allow IV inference with latent vari­
able estimation techniques. 

Inference with invalid instruments in linear settings 
Much of the work on valid inference with invalid instru­
ments is in the Mendelian randomization literature, where 
violations of the exclusion restriction are common. For a 
recent survey, see Hemani et al. (2018). There are two broad 
approaches to valid inference in the presence of bias intro­
duced by invalid instruments: averaging over the bias, or 
eliminating the bias with ideas from robust statistics. In the 
first setting, valid inference is possible under the assumption 
that each instrument introduces a random bias, but that the 

1Strictly, non-causal instruments suffice but identification and 
interpretation of the estimates can be more subtle (see Swanson & 
Hernán, 2018). 
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mean of this process is zero (although this assumption can 
be relaxed (c.f. Bowden et al., 2015; Kolesár et al., 2015)). 
Then, the bias tends to zero as the number of instruments 
grow. Methods in this first broad class have the attractive 
property that they remain valid even if none of the instru­
ments is valid, but they rely on strong assumptions that do 
not easily generalize to the nonlinear setting considered in 
this paper. 

The second class of approaches to valid inference assumes 
that some fraction of the instruments are valid and then uses 
the fact that biased instruments are outliers whose effect can 
be removed by leveraging robust estimators. For example, 
by assuming majority validity and constant linear treatment 
effects2, Kang et al. (2016) and Guo et al. (2018) show that 
it is possible to consistently estimate the treatment effect 
via a Lasso-style estimator that uses the sparsity of the 
` 1 norm to remove invalid instruments. Under the same 
linearity and constant effect assumptions, Hartwig et al. 
(2017) showed that one can estimate the treatment effect 
under modal validity by estimating the mode of a set of 
Wald estimators. In this paper, we use the same modal 
insight as Hartwig et al., but generalize the approach to a 
nonlinear setting, thereby removing the strong assumption 
of constant treatment effects. Finally, Kuang et al. (2020) 
recently showed that, under majority validity, it is possible to 
leverage structure learning techniques produce a “summary 
(valid) IV” that can be plugged into downstream estimators. 
They focus on a setting with binary instruments, responses 
and confounders whereas we aim for a generic method that 
places no constraints on the data generating process beyond 
those necessary for identification. 

Ensemble models Ensembles are widely used in machine 
learning as a technique for improving prediction perfor­
mance by reducing variance (Breiman, 1996) and combining 
the predictions of weak learners trained on non-uniformly 
sampled data (Freund & Schapire, 1995). These ensem­
ble methods frequently use modal predictions via majority 
voting among classifiers, but they are designed to reduce 
variance. Both the median and mode of an ensemble of 
models have been explored as a way of improve robustness 
to outliers in the forecasting literature (Stock & Watson, 
2004; Kourentzes et al., 2014), but we are not aware of any 
prior work that explicitly uses these aggregation techniques 
to eliminate bias from an ensemble. 

Mode estimation If a distribution admits a density, the 
mode is defined as the global maximum of the density func­
tion. More generally, the mode can be defined as the limit of 
a sequence of modal intervals—intervals of width h that con­

2That is, assuming that the true structural equation is some 
linear function of the treatment and invalid instruments, and that 
all units share the same treatment effect parameter, (. 

tains the largest proportion of probability mass—such that 
xmode = limh!0 arg max F ([x - h/2, x  + h/2]). These x 
two definitions suggest two estimation methods for estimat­
ing the mode from samples: either one may try to estimate 
the density function and the maximize the estimated func­
tion (Parzen, 1962), or one might search for midpoints of 
modal intervals from the empirical distribution functions. 
To find modal intervals, one can either fix an interval width, 
h, and choose x to maximize the number of samples within 
the modal interval (Chernoff, 1964), or one can solve the 
dual problem by fixing the target number of samples to fall 
into the modal interval and minimizing h (Dalenius, 1965; 
Venter, 1967). We use this latter Dalenius–Venter approach 
as the target number of samples can be parameterized by 
the number of valid instruments, thereby avoiding the need 
to select a kernel bandwidth h. 

3. ModeIV 

In this paper, we assume we have access to a set of k 
candidate variables, Z = {z1, . . . , zk}, which are ‘valid’ 
instrumental variables if they satisfy relevance, exclusion 
and unconfounded instrument, and are ‘invalid’ otherwise. 
Denote the set of valid instruments, V := {zi : zi 6? 
t, zi ? ✏, zi ? y|x, t, ✏}, and the set of invalid in­
struments, I = Z \ V . We further assume that each 
valid instrument identifies the causal effect. In the ad­
ditive confounder setting, this amounts to assuming that 
the unobserved confounder’s effect on y is additive, such 
that y = f(t, x, zi:i2I ) +  ✏ for some function f and 
E[y|x, zi:i=6 j , zj ] =  

R 
f(t, x, zi:i=6 j )dF (t|x, zi:i=6 j , zj ) has 

the same unique solution for all j in Z . 

The ModeIV procedure requires the analyst to specify a 
lower bound V ? 2 on the number of valid instruments and 
then proceeds in three steps. 

1.	 Fit an ensemble of k estimates of the conditional out­
come {f̂1, . . . ,  f̂k} using a non-linear IV procedure ap­
plied to each of the k instruments. Each f̂  is a function 
mapping treatment t and covariates x to an estimate of 
the effect of the treatment conditional on x. 

2.	 For a given test point (t, x), select [l̂, û] as the 
smallest interval containing V of the estimates 
{f̂1(t, x), . . . ,  f̂k(t, x)}. Define Îmode = {i : l̂  
f̂  
i(t, x)  û} to be the indices of the instruments cor­

responding to estimates falling in the interval. 
13. Return f̂mode(t, x) =  

P
i2ˆ f̂i(t, x)|Îmode| Imode 

Figure 1 shows this procedure graphically. The idea is 
that the estimates from the valid instruments will tend to 
cluster around the true value of the effect, E[y|do(t), x]. We  
assume that the most common effect is a valid one; i.e., that 

http:E[y|do(t),x].We
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Figure 1. Example of the ModeIV algorithm with 7 candidates 
(4 valid and 3 invalid) from the biased demand simulation (see 
Section 4). The 7 estimators shown in the plot are each trained 
with a different candidate, and at every test point t, the mode of 
the 7 predictions is computed point-wise. The region highlighted 
in green contains the 3 predictions that formed part of the modal 
interval for each given input. The ModeIV prediction—the mean 
of the 3 closest prediction—is shown in solid green. 

the modal effect is valid. To estimate the mode, we look 
for the tightest cluster of points which, by definition, are 
the points contained in Îmode. Intuitively, each estimate 
in this interval should be approximately valid and hence 
approximates the modal effect. Finally, we average these 
estimates to reduce variance. 

The next theorem formalizes this intuition by showing that 
ModeIV asymptotically identifies and consistently estimates 
the causal effect. 

Theorem 1. Fix a test point (t, x) and let f̂1, . . . ,  f̂k be 
estimators of the causal effect of t at x corresponding to k 

ˆ(possibly invalid) instruments. E.g., f̂j = fj (t, x). Denote 
the true effect as f = E[y|do(t), x]. Suppose that 

1.	 (consistent estimators) f̂j ! fj almost surely for each 
instrument. In particular, fj = f whenever the jth 
instrument is valid. 

2.	 (modal validity) At least v of the instruments are valid, 
and no more than v - 1 of the invalid instruments 
agree on an effect. That is, v of the instruments yield 
the same estimand if and only if all of those instruments 
are valid. 

Let [l̂, û] be the smallest interval containing v of the instru­

ˆments and let Îmode = {i : l̂  fi  û}. Then, 

X 
ŵif̂i ! f 

i2Îmode 

almost surely, where ŵi, wi are any non-negative set of 
weights such that each ŵi ! wi a.s. and 

P
wi = 1.i2Îmode 

We defer all proofs to the supplementary material. 

Of course, the ModeIV procedure can be generalized to 
allow estimators of the mode that are different from the one 
used in Steps 2 and 3. The key advantage of the Dalenius– 
Venter modal estimator is that the optimal choice for its only 
hyper-parameter, V , does not depend on the distribution 
of the estimators at a given test point. By contrast, kernel 
density-based modal estimators require tuning a length-scale 
parameter, where the optimal choice may vary as a function 
of the test point, (t, x). It is also straightforward to imple­
ment3, and relatively insensitive to the choice of V . The 
procedure as a whole is, however, k times more computa­
tionally expensive than running single estimation procedure 
at both training and test time. 

Despite its simplicity, ModeIV has strong point-wise worst-
case guarantees. Theorem 2 shows that if each estimate is 
bounded,4 then even in the worst case where v - 1 invalid 
candidates all agree on an effect, ModeIV converges at 
the same rate as the underlying estimators to the solution 
of an oracle that uniformly averages the valid instruments. 
In particular, if the estimators achieve the parametric rate, p
1/ n, in the number of instances n, then ModeIV also p
converges at 1/ n.
 
Theorem 2. For some test point (t, x), let Z =
 

ˆ{f̂1, . . . ,  fk} be k estimates of the causal effect of t at x. 
Assume, 

[Bounded estimates] Each estimate is bounded by some 
constants, [ai, bi] 

[Convergent estimators] Each estimator converges in mean 
1

squared error at a rate n-r 
(where r = if the estimator 2 

achieves the parametric rate), and hence each estimator has 
<ifinite variance, Var(f̂i) =  Y2r for some ci. n

Then, if c = maxi2V ci there exists a, C, such that 
E[(ModeIV(Z) -f)2 - ( 1 P f̂i -f)2]  9kCcn-r . v i2V 

4. Experiments 

We studied ModeIV empirically in two simulation settings. 
First, we investigated the performance of ModeIV for non­
linear effect estimation as the proportion of invalid instru­
ments increased for various amounts of direct effect bias. 
Second, we applied ModeIV to a realistic Mendelian ran­
domization (MR) simulation to estimate heterogeneous treat­

3See the appendix for an efficient Pytorch (Paszke et al., 2019) 
implementation 

4Boundedness is benign as long as we are not extrapolating too 
far outside of the range of data we observe: standard estimators 
do not typically make predictions for E[y|do(t), x] outside of the 
range [mini yi,maxi yi] of observed yi’s. 
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Figure 2. ModeIV is insensitive to the amount of exclusion violation bias. This figure shows performance on the biased demand simulation 
for various numbers of invalid instruments. The x-axis shows the amount of exclusion violation bias (introduced by scaling the 1 
parameter in the response equation below). 

ment effects. For all experiments, we use DeepIV (Hart­
ford et al., 2017) as the nonlinear estimator. The existing 
methods for addressing bias from invalid instruments are 
designed for the linear setting, so as baselines we com­
pare to DeepIV with oracle access to the set of valid instru­
ments (DeepIV-opt); the ensemble mean (Mean) which tests 
whether any performance improvements that we observe are 
driven by variance reduction from ensembling; and a naive 
approach that fits a single instance of DeepIV treating all 
instruments as valid (DeepIV-all). For the MR experiments 
we also compare to Guo et al. (2018). The heterogeneous 
effects in our MR simulation violates Guo et al.’s linearity 
assumption, but their method is designed with MR in mind 
so the comparison illustrates the effect of incorrectly assum­
ing linearity in this setting. In the appendix, we evaluated 
ModeIV on Guo et al.’s linear MR data generating process; 
we found that as long as a large enough sample is used, it 
accurately recovered the true effect. 

Biased demand simulation We evaluated the effect of 
invalid instruments on estimation by modifying the low 
dimensional demand simulation from Hartford et al. (2017) 
to include multiple candidate instruments. The demand 
simulation models a scenario where the treatment effect 
varies as a function5, , of time, x0, and other observed 
covariates x. 

z1:k, ⌫ ⇠ N (0, 1) x0 ⇠ unif(0, 10) e ⇠ N (⇢⌫, 1 - ⇢2), 
t = 25 + (z T f(zt) + 3) (x0) +  ⌫ 

T y = 100 + 10x1:df
(x) (x0)+  

T T f(zy))(x1:df
(x) (x0) - 2) t + 160 sin(z + e | {z } | {z

Treatment effect Exclusion violation 
}

5 (x0) = 2  
⇣
(x0 - 5)4/600 + e-4(x0-5)2 

+ x0/10 - 2
⌘ 

. 
See the appendix for a plot of the function and full details of 
the simulation. 

We highlight the differences between this data generating 
process and the original in red: here we have k instruments 
whose effect on the treatment is parameterized by f(zt), 
instead of a single instrument in the original; we include 
an exclusion violation term which introduces bias into stan­
dard IV approaches whenever 1 is non-zero. The vector 
f(zy) controls the direct effect of each instrument: invalid 
instruments have nonzero fi 

(zy) coefficients, while valid 
instrument coefficients are zero. 

We fitted an ensemble of k different DeepIV models that 
were each trained with a different instrument zi. In Fig­
ure 2, we compare the performance of ModeIV with three 
baselines: DeepIV with oracle access to the set of valid 
instruments (DeepIV-opt); the ensemble mean (Mean); and 
a naive approach that fit a single instance of DeepIV treating 
all instruments as valid (DeepIV-all). The x-axis of the plots 
indicates the scaling factor 1, which scales the amount of 
bias introduced via violations of the exclusion restriction. 
All methods performed well when all the instruments were 
valid. Once the methods had to contend with invalid instru­
ments, Mean and DeepIV-all performed worse than ModeIV 
because of both methods’ sensitivity to the biased instru­
ments. ModeIV’s mean squared error closely tracked that 
of the oracle method as the number of biased instruments 
increased, and the raw mean squared errors of both methods 
also increased as the number of valid instruments in the 
respective ensembles correspondingly fell. 

Sensitivity When using ModeIV, one key practical ques­
tion that an analyst faces is choosing V , the lower bound on 
the number of valid instruments. We evaluated the impor­
tance of this choice in Figure 3 by testing the performance of 
ModeIV across the full range of choices for V with different 
numbers of biased instruments. We found that, as expected, 
the best performance was achieved when V was the true 
number of valid instruments, but also that similar levels 
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Figure 3. ModeIV’s sensitivity to the choice of number of valid 
instruments parameter V . Best performance is achieved when V 
is equal to the true number of valid instruments, but the method is 
relatively insensitive to more conservative choices of V . 

of performance could be achieved with more conservative 
choices of V . That said, with only 5 valid instruments, Mod­
eIV tended to perform worse when V was set too small. For 
an illustration of why this occurs, consider Figure 1 which 
visualizes the ModeIV procedure. In the figure, there are 
a number of regions of the input space where the invalid 
instruments agreed by chance (e.g. t 2 [-1, 0.]), so these 
regions bias ModeIV for small mode set sizes. Overall, we 
observed that setting V = bk/2c (where k is the number of 
instruments) tended to work well in practice. 

Asymptotically, ModeIV remains consistent when fewer 
than half of the instruments are valid, but when this is the 
case there are far more ways that Assumption 2 of Theorem 
1 can be violated. This is illustrated in Figure 1 which shows 
that there are a number of regions where the bias instruments 
agree by chance. Because of this, we recommend only 
using ModeIV when one can assume that the majority of 
instruments are valid, unless one has prior knowledge to 
justify modal validity without assuming the majority of 
instruments are valid.6 

Bootstrap inference When using deep learning-based es­
timators, one typically does not have closed form expres­
sions for confidence intervals or knowledge of the joint dis­
tribution over estimators, so we evaluated the performance 
of ModeIV with bootstrap confidence intervals. Table 1 
summarizes the results. On this simulation we found that 
bootstrap confidence intervals with ModeIV were reason­
ably accurate as long as V was set low enough: with V = 2  
or 3, coverage was above 90% for 95% confidence intervals. 
With larger settings of V , we found worse performance as 
the narrower intervals did not account for occasional selec­
tion of biased instruments. Figure 4 shows a plot of the boot­

6For example, if direct effects are strictly monotone and dis­
agree, chance agreements among invalid instruments can only 
occur in a finite number of locations. 

strap confidence intervals for both the average dose-response 
curve and various conditional averages. The intervals are 
narrow enough that they show the true dose-response curve, 
while still providing reasonable coverage. 

4/7 valid 5/7 valid 6/7 valid 

ModeIV-2 90.26% 94.79% 94.27% 
ModeIV-3 87.82% 92.13% 92.79% 
ModeIV-4 85.30% 90.10% 91.16% 
ModeIV-5 72.80% 85.88% 88.06% 
ModeIV-6 51.87% 70.63% 83.80% 
ModeIV-7 34.12% 45.05% 66.44% 
DeepIV-All 16.85% 18.48% 19.89% 
DeepIV-Opt 95.07% 95.85% 95.79% 
Ens-Mean 34.37% 45.29% 66.65% 

Table 1. ModeIV attains reasonable point-wise coverage for boot­
strap 95% confidence intervals on the biased demand simulation. 

Mendelian randomization simulation For the second 
experiment, we evaluated our approach on simulated data 
adapted from Hartwig et al. (2017), which is designed to 
reflect violations of the exclusion restriction in Mendelian 
randomization studies. 

Instruments, zi, represent SNPs—locations in the genetic 
sequence where there is frequent variation among people— 
modeled as random variables drawn from a Binomial(2, pi) 
distribution corresponding to the frequency with which an 
individual gets one or both rare genetic variants. The treat­
ment and response are both continuous functions of the 
instruments with Gaussian error terms. The strength of the 
instrument’s effect on the treatment, ↵i, and direct effect on 
the response, �i, are both drawn from Uniform(0.01, 0.2) 
distributions for all i. For all experiments we used 100 
candidate instruments and varied the number of valid instru­
ments from 50 to 100 in increments of 10; we set �i to 0 for 
all valid instruments. More formally, 

T 1(xt)zi ⇠ Binomial(2, pi) f(x) :=  round(x , 0.1). 
K K

t := 
X 

↵j zj + ⇢u+ ✏x, y  := f(x)t+ 
X 

�j zj + u+ ✏y 

j=1 j=1 

In the original Hartwig et al. simulation, the treatment effect 
f was fixed for all individuals. Here, we make the treatment 
effect vary as a function of observable characteristics to 
model a scenario where treatments may affect different sub­
populations differently. We simulate this by making the 
treatment effect, f(x), a sparse linear function of observable 
characteristics, x 2 R10, where 3 of the 10 coefficients, 
1(xt) were sampled from U(0.2, 0.5) and the remaining i 

1(xt) were set to 0. We introduce non-linearity by rounding i 
to the nearest 0.1, which makes the learning problem harder, 
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Figure 4. Bootstrap 95% confidence interval for the (conditional) dose-response curve of ModeIV with V = 3 for the biased demand 
simulation. The left plot shows the unconditional curve, and the remaining three curves are conditioned on the time variable, t. 

while making it easier to visually show differences between 
the fitted functions and their targets. 

Mendelian randomization problems tend to have low signal­
to-noise ratios because typical response variables tend to be 
influenced by a large number of unobserved factors; in this 
simulation, the treatment explains only 1-3% of the response 
variance. This makes the setting challenging for neural 
networks, which tend to perform best on low-noise regimes. 
To address this, we leveraged the inductive bias that the data 
is conditionally linear in the treatment effect, by using a 
neural network to parameterize the slope of the treatment 
variable rather than outputting the response directly. So, for 
these problems, we defined f̂(t, x) =  g(c(x))t + h(c(x)), 
where g(·) and h(·) are linear layers that act on a shared 
representation c(x). 

Among the DeepIV-based benchmarks, the general trends 
that we observed on the Mendelian randomization 
simulation—summarized in Table 2—were similar to those 
we observed in the biased demand simulation: DeepIV-all 
performed poorly and ModeIV closely tracked the perfor­
mance of our oracle, DeepIV-opt. On this simulation the 
mean ensemble (Mean) achieved stronger performance, but 
still did not match ModeIV. 

Aside from the heterogeneity induced by f(x), this data 
generating process is linear so we can use it to evaluate the 
effect of heterogeneity on methods that assume a constant 
linear treatment effect. Guo et al.’s Two-Stage Hard Thresh­
olding (TSHT) accurately recovered the average treatment 
effect (ATE) on this problem (see Table 5 in the appendix), 
but as Table 2 shows, it was not able to match the perfor­
mance of ModeIV in predicting E[y|do(t), x]. Note that 
this is a challenging baseline: with the sample size used in 
this simulation (400 000), Guo et al.’s method has very few 
false positives in identifying the valid instruments (see Ta­
ble 5 in the appendix), so it is essentially running two-stage 
least squares on a linear model with a ‘random’ (from the 
perspective of the model) coefficient f(x). Linear models 
are optimal in this setting, so ModeIV can only outperform 

TSHT by leveraging the interaction between x and f. That 
said, there is a trade-off: TSHT was unbiased in predicting 
the ATE, but both DeepIV-Opt and ModeIV picked up some 
bias: DeepIV-Opt over-estimated the conditional average 
treatment effect by 0.035 and ModeIV by 0.045 for true 
effect sizes that range between -0.3 and 0.3 (see Table 3 
in the appendix). This bias is small but significant, and is 
also reflected in lower coverage from bootstrap confidence 
intervals. We found that when targeting a 90% confidence 
interval, DeepIV-Opt achieved only 80% coverage and Mod­
eIV only managed 60% (Table 4 in the appendix). 

Conditional average treatment effects and bootstrap 
inference Figure 5 shows the predicted dose–response 
curves for a variety of different levels of the true treatment 
effect. The six plots correspond to six different subspaces 
of x that all have the same true conditional treatment effect. 
Each of the light blue lines shows ModeIV’s prediction for 
a different value of x. The model is not told that the true f 
is constant for each of these sub-regions, but instead has to 
learn that from data so there is some variation in the slope 
of each prediction. Despite this, the majority of predicted 
curves match the sign of the treatment effect for each sub­
group of x and accurately predicted the relative differences 
between the subgroups. 

5. Limitations 

Local average treatment effects. The key assumption 
that ModeIV relies on is that each valid instrument consis­
tently estimates the same function, f(t, x). In settings with 
discrete treatments, one typically only identifies a “(con­
ditional) local average treatment effect” (CLATE / LATE 
respectively) for each instrument. The LATE for instrument 
i can be thought of as the average treatment effect for the 
sub-population that changes its behavior in response to a 
change in the value of instrument i; if the LATEs differ 
across instruments, this implies that each instrument will 
result in a different estimate of E[f̂i(t, x)] regardless of 



Valid Causal Inference with (Some) Invalid Instruments 

Model 50% valid 60% valid 70% valid 80% valid 90% valid 100% valid 

DeepIV (valid) 
MODE-IV 30% 
MODE-IV 50% 
Mean 
DeepIV (all) 
TSHT 

0.035 ± (0.001) 

0.037 ± (0.001) 

0.037 ± (0.001) 

0.041 ± (0.001) 

0.099 ± (0.004) 

0.089 ± (0.005) 

0.035 ± (0.001) 

0.037 ± (0.001) 

0.037 ± (0.001) 

0.041 ± (0.001) 

0.116 ± (0.003) 

0.075 ± (0.003) 

0.034 ± (0.001) 

0.038 ± (0.001) 

0.038 ± (0.001) 

0.043 ± (0.001) 

0.149 ± (0.005) 

0.073 ± (0.003) 

0.034 ± (0.001) 

0.039 ± (0.001) 

0.039 ± (0.001) 

0.043 ± (0.001) 

0.149 ± (0.005) 

0.073 ± (0.003) 

0.032 ± (0.0) 

0.041 ± (0.001) 

0.04 ± (0.001) 

0.045 ± (0.001) 

0.142 ± (0.003) 

0.072 ± (0.003) 

0.024 ± (0.001) 

0.032 ± (0.001) 

0.032 ± (0.001) 

0.036 ± (0.001) 

0.025 ± (0.0) 

0.072 ± (0.003) 

Table 2. Performance on the Mendelian randomization simulation for various proportions of valid instruments. The ensemble methods 
performed far better than the DeepIV model, which treated all instruments as valid, and ModeIV, which gave significantly better 
performance than the mean ensemble, was close to the performance of DeepIV on the valid instruments. 
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Figure 5. Estimated conditional dose–response curves for the Mendelian randomization simulation. Each light blue curve shows ModeIV’s 
estimate f(t, x) for some IID sample of x; each figure’s dark curve represents the average over all samples of x. The six plots show the 
different subsets of the range, x, where true slope ((x) is (left to right) -0.2, -0.1, 0., 0.1, 0.2 and 0.3 respectively. 

whether any of the instruments are invalid. In such settings, 
ModeIV will return the average of the V closest f̂i(t, x)’s, 
but one would need additional assumptions on how these 
estimates cluster relative to biased estimates to apply any 
causal interpretation to this quantity. The alternative is the 
approach that we take here: assume that a common function 
f(t, x) is shared across all units and allow for heterogeneous 
treatment effects by allowing the treatment effect to vary as 
a function of observed covariates x. This shared heteroge­
neous effect assumption is weaker than prior work on robust 
IV, which requires a “constant effect” effect assumption that 
every individual responds in exactly the same way to the 
treatment via a parameter, f. 

Selecting instruments? ModeIV constitutes a consistent 
method for making unbiased predictions but, somewhat 
counter-intuitively, it does not directly offer a way of infer­
ring the set of valid instruments. For example, one might 
imagine identifying the set of candidates that most often 
form part of the modal interval Îmode. The problem is that 
while candidates that fall within the modal interval Îmode 

tend to be close to the mode, the interval can include in­
valid instruments that yielded an effect close to the mode by 
chance. Since these invalid estimates are close to the truth, 
they do not hurt the estimate. We can see this in Figure 1 
where invalid instruments form part of the modal interval in 
the region t 2 [-3.5,-2], without introducing bias. 

Relaxing independence of instrumental variables. We 
assume that each of the valid instruments is unconfounded. 
This is easiest to achieve in settings where each instrument 
is independent. This setting is shown in Figure 6 (left) where 
we have k candidates, {zi : i 2 1, . . . , k}, some of which 
are valid, and some of which are invalid (e.g. zk shown in 
pink has a direct effect on the response). This independent 
candidates setting is most common where the instruments 
are explicitly randomized: e.g. in judge fixed effects where 
the selection of judges is random. 

A more complex setting is shown in Figure 6 (right). Here, 
the candidates share a common cause, u. In this scenario, if 
u is not observed, each of the previously valid instruments 
(e.g. z1, z2 and zk-1 in the figure) are no longer valid 
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Figure 6. When each of the instruments is independent (left), the unconfounded instrument assumption is easily satisfied for the valid 
instruments so ModeIV applies. When the instruments share a common cause (right), care is needed to ensure that we block the path 
zvalid u ! zinvalid ! y. See the limitations discussion above for details. 

because they fail the unconfounded instrument assumption 
via the backdoor path z1 u ! zk ! y. However, if we 
condition on all the candidates that have a direct effect on 
y and treat them as observed confounders, we block this 
path which allows for valid inference. Of course we do not 
know which of the candidates have a direct effect, so when 
building an ensemble, for each candidate zi, we treat all zj 6=i 

as observed confounds to block these potential backdoor 
paths. This addresses the issue as long as there is not some 
zk+1 which is not part of our candidate set, but nevertheless 
opens up a backdoor path z1 u ! zk+1 ! y. If u 
is observed, we can simply control for it. This suggests a 
natural alternative approach would be to try to estimate u 
and control for its effect, using an approach analogous to 
Wang & Blei (2019). 

6. Discussion 

The conventional wisdom for IV analysis is: if you have 
many (strong) instruments and sufficient data, you should 
use all of them so that your estimator can maximize statis­
tical efficiency by weighting the instruments appropriately. 
This remains true in our setting—indeed, DeepIV trained 
on the valid instruments typically outperformed any of the 
ensemble techniques—but of course requires a procedure 
for identifying the set of valid instruments. In the absence of 
such a procedure, falsely assuming that all candidate instru­
ments are valid can lead to large biases, as illustrated by the 
poor performance of DeepIV-all. ModeIV gives up some 
efficiency by filtering instruments, but it gains robustness 
to invalid instruments with strong worst case asymptotic 
guarantees, and in practice we found that the loss of effi­
ciency was negligible. Of course, that empirical finding will 
vary across settings. A useful future direction would find 

a procedure for recovering the set of valid instruments to 
further reduce the efficiency trade-offs. 
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