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Abstract
A key goal of unsupervised representation learning is “inverting” a data generating

process to recover its latent properties. Existing work that provably achieves this
goal relies on strong assumptions on relationships between the latent variables (e.g.,
independence conditional on auxiliary information). In this paper, we take a very
different perspective on the problem and ask, “Can we instead identify latent properties
by leveraging knowledge of the mechanisms that govern their evolution?” We provide
a complete characterization of the sources of non-identifiability as we vary knowledge
about a set of possible mechanisms. In particular, we prove that if we know the
exact mechanisms under which the latent properties evolve, then identification can be
achieved up to any equivariances that are shared by the underlying mechanisms. We
generalize this characterization to settings where we only know some hypothesis class
over possible mechanisms, as well as settings where the mechanisms are stochastic. We
demonstrate the power of this mechanism-based perspective by showing that we can
leverage our results to generalize existing identifiable representation learning results.
These results suggest that by exploiting inductive biases on mechanisms, it is possible
to design a range of new identifiable representation learning approaches.

1 Introduction

Modern unsupervised representation learning techniques can generate images of our world
with intricate detail (e.g. Karras et al., 2019; Song et al., 2020; Razavi et al., 2019), and
yet, the latent representations from which these images are generated remain entangled and
challenging to interpret (Schölkopf et al., 2021; Locatello et al., 2019). At the same time,
the success of pre-trained of transformers (Devlin et al., 2018; Brown et al., 2020) shows that
advances in our ability to disentangle the underlying generative factors can lead to dramatic
improvements in the sample complexity of downstream supervised tasks (Bengio & LeCun,
2007; Bengio et al., 2013). In order to consistently replicate this success, we need methods
that can reliably invert the data generating process. This is a challenging task because
unsupervised representation learning with independent and identically distributed (IID)
data is hopelessly unidentified : even in the nice case in which observations are generated
via some p(x|z), there exists an infinitely large class of possible latent distributions p̃(z|x)
that are consistent with the observed marginal distribution, p(x), and only one of them
corresponds to the true latent distribution p(z|x) (Locatello et al., 2019; Khemakhem et al.,
2020a).

If we want to build systems which are able to provably identify1 the true latent variables
z that generated our observed data x = g(z) for some observation model g, then we need

∗equal contribution, author order selected randomly.
1A problem is identified if there exists a unique solution in the infinite data limit and no constraints on

model capacity.
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Figure 1: This simple data generating process illustrates that if we know the set of
mechanisms that govern the evolution of an environment, this constrains the set of possible
representations to any equivariances of these mechanisms. At each time step, we observe
an environment of bouncing balls in pixel space as images, xt. These images are produced
by some rendering engine, g, as a function of the true latent representation zt, which in
this case gives positions and velocities of each ball (illustrated by the location and length
of the arrows in the latent representation). At each time step, the state evolves according
to a mechanism, mt. Any candidate model that is consistent with the observed data has to
satisfy the observation identity. If an encoder produces either the true representation (shown
in green), or a representation transformed by some equivariance of the mechanism (e.g. the
blue rotated representation) then the observation identity is satisfied. However, models
that produce representations that are arbitrary transformations of the true representation
(e.g. the pink warped representation) can be discarded as they are not consistent with the
observation identity.

to exploit structural assumptions that constrain this set of possible distributions. Most
of the prior work that can provide such guarantees was developed in the independent
component analysis (ICA) literature. The key ICA assumption is that the latent factors are
(conditionally) independent and non-Gaussian. Then, if the observation model, g : Z → X
is linear and invertible, z = g−1(x) is identified (Comon, 1994), and for nonlinear g there
are a number of recent approaches that leverage non-stationarity in the distributions over
z to identify g−1 (Hyvarinen & Morioka, 2016, 2017; Hyvarinen et al., 2019; Khemakhem
et al., 2020a). These results give a tantalizing demonstration that representation learning
with identification guarantees is possible, but the requirement that the latent factors are
statistically (conditionally) independent is limiting2 (Higgins et al., 2018; Schölkopf et al.,
2021).

In this paper we take a very different approach. We study how the mechanisms that
govern an environment’s evolution constrain the set of possible latent representations that
are consistent with the data. As a simple concrete example, consider the bouncing ball
environment shown in Figure 1. The latent state can be completely described by a vector,
z, containing the position, velocity and acceleration of the balls3, and given this latent
state, the images, x, shown in Figure 1, are produced via some rendering engine g : Z → X .
Our task is to leverage sequences of observations x1, . . . , xT and knowledge of m to recover
z1, . . . , zT . If we can show that this task has a unique solution that is consistent with the

2As a simple example of dependence between latent variables, assume the bouncing balls shown in
Figure 1 have different masses indicated by their colors. If the initial conditions were such that all the balls
have the same momentum, then mass and velocity will be inversely correlated.

3A complete generative model of these images would also need to track the colors and shapes of the
elements; we will return to this issue in the discussion of the results.

2



observations and mechanisms, then the problem is identified.
Our main result is that when we know the true mechanism, m, the system is identified

up to any equivariances of the mechanism; or equivalently, in Section 2.1 we prove that
we can identify z up to any invertible transformation a : Z → Z that commutes with m,
such that the composition m ◦ a = a ◦m. For example, in the bouncing balls environment
shown in Figure 1, the laws of physics are equivariant with respect to your choice of units
of measurement—changing from representing z in meters to inches leaves the output of the
mechanism unchanged up to a corresponding unit change—and hence we can only hope
to identify z up to some scaling function a(z) which corresponds to an arbitrary choice of
units of measurement. Interestingly, when the environment evolves according to multiple
known mechanisms, the sources of non-identifiability are even further constrained: such a
system is identified up to equivariances that are shared by all n mechanisms.

Perfectly knowing the true mechanisms and when they are applied is unlikely, but in
Section 2.2 we show that we can relax that assumption to a setting where we instead
know a hypothesis class of possible mechanisms that could have been applied. This weaker
assumption leads to an additional source of non-identifiability: the mechanisms in our
hypothesis class can imitate each other if there exists an invertible transformation a such
that for any two mechanisms m1 and m2 in our hypothesis class, m2 = a−1 ◦ m1 ◦ a.
For example, if we are in a setting where our hypothesis class includes both a product
mechanism, m1(z) =

∏
i zi, and a sum mechanism, m2(z) =

∑
i zi, then m1 can imitate

m2 if a(z) = exp(z), since
∑

i zi = log(
∏
i exp(zi)). As before, this result is complete, in

the sense that these two sources of non-identifiability—equivariance and imitation—are the
only sources of non-identifiability in such systems. This gives us a natural way of thinking
about the way knowledge of deterministic mechanisms constrains a representation learning
task: with complete knowledge, the only source of non-identifiability is any equivariances
inherent in the mechanism, but by allowing a hypothesis class of possible mechanisms, we
introduce potential non-identifiability via imitation. That said, the relationship between
the size of the hypothesis class and the size of the set of a’s that commute via imitation is
not necessarily monotonic: for environments governed by multiple mechanisms, a larger
hypothesis class can lead to fewer imitations.

Section 3, shows that we can derive analogous results for stochastic mechanisms, m(z, U),
where the mechanism defines a conditional distribution p(zt+1|zt). This generalization gives
us a way of comparing our mechanism-based perspective with existing identifiability results.
We demonstrate this in Section 4 by showing that it is possible to view the distributional
assumptions made in Klindt et al. (2020) as a particular choice of mechanism, and by doing
so, we can leverage our theory to give alternative proofs of these results. This strategy
required weaker distributional assumptions, thereby generalizing their result. Finally, we
give a mechanism-based perspective on the related work in Section 5 and Section 6 concludes
with a discussion of the open problems that need to be addressed in order to reliably leverage
this approach in practice.

2 Mechanism based identification

Data generation process Throughout this paper, we assume that the state of the
system at time t ∈ {1, · · · , T} is given by zt ∈ Z ⊆ Rd. At each time t, we observe
g(zt) = xt ∈ X ⊆ Rn, which is some transformation of the latent zt. We can think of
g : Z → X as a function that transforms the (typically low dimensional) state variables
to the (typically high dimensional) observed variables; for example, in the bouncing ball
environment described in the introduction, g is the rendering engine that produces the
images shown in Figure 1. We assume g is injective with respect to Rn—i.e. g(z1) = g(z2)
implies z1 = z2; or equivalently, any change to the underlying state, z, is reflected in some
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pixel-level change to the observation x—and we make g bijective by restricting its inverse
g−1 to any x on the data manifold which we denote X (i.e. X is the image of g). The
state transition from time t to t+ 1 is governed by a mechanism mt : Z → Z. There may
be multiple mechanisms in a given environment. For example in Figure 1 the transition
from z1 to z2 does not involve any collisions so the state evolves according to Newton’s first
law of motion (Newton, 1687); the transition from z2 to z3 involves a collision between
two of the balls that is described by Newton’s third law. Together mt and g describe the
data-generation from time t to t+ 1 as follows,

xt ← g(zt), zt+1 ← mt(zt). (1)

If we fix the initial conditions, z0, this data generation process is deterministic. In Section 2.1,
we provide results when the underlying mechanism is known and in Section 2.2, we we extend
those results to the case when the mechanisms are not known. In Section 3, we extend
our results to stochastic mechanisms, m(Zt, U) that take samples from some distribution
U ∼ Uniform(0, 1) as input. These stochastic mechanisms can represent any conditional
distribution P (Zt+1|Zt) over states.4

2.1 Identifying encoders when the underlying mechanism is known

We begin in the simplest version of the system described by equation (1): assume that at
each time t the same mechanism m : Z → Z is used, and we know this mechanism. From
these assumptions we can derive an identity that describes how the observations xt and
xt+1 are related,

zt+1 = m(zt), g−1(xt+1) = m ◦ g−1(xt), xt+1 = g ◦m ◦ g−1(xt). (2)

It may be helpful to think of this identity as describing an autoencoder where we require
that the encoder g−1(xt) inverts the data generating process to produce some latent zt
from xt, and that the decoder has to reproduce xt+1 from m(zt); i.e. the representation
transformed by the mechanism. Importantly, this identity describes the true data generating
process, rather than some model of it. Our hypothesis class over the possible encoder /
decoder functions is the set, G, of all bijective functions from Z → X . By assuming that
bijectivity we are essentially assuming that the reconstuction task is solved:5 G is the set
of all autoencoders that perfectly reproduce the data, such that for any x on the data
manifold X , and any an encoder / decoder pair (g̃−1, g̃) with g̃ ∈ G, their composition is
the identity function, x = g̃ ◦ g̃−1 ◦ x. Because we assumed that the true g is bijective, we
know that it is in our search space, G. We can constrain this set using our knowledge of
the mechanism by only considering solutions that also satisfy the identity given in equation
2, such that for every pair of observations (xt, xt+1), an analogous identity holds,

xt+1 = g̃ ◦m ◦ g̃−1(xt)

Now suppose that we have access to observations xt from the entire set X , then the above
identities have to hold for all xt,∈ X with corresponding xt+1 from (2), so we can conclude
that the follow functions are equal,

g ◦m ◦ g−1 = g̃ ◦m ◦ g̃−1 (3)
4For example, if Zt+1|Zt ∼ N (Zt, σ) then m(z, U) = z + σΦ−1(U) where Φ is the cumulative density of

a standard Gaussian. Strictly, representing a joint (Zt+1, Zt) as (m(Zt, U), Zt) requires a restriction to nice
spaces. See Austin (2015, Lemma 3.1).

5This is obviously a strong assumption—learning autoencoders that perfectly reconstructed the data is
not at all easy—but it focuses the discussion on the identification issues that remain after reconstruction is
solved.
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This relationship will hold for any of the possible decoders g̃ (and corresponding encoders
g̃−1) that that are observationally equivalent given our assumptions. We denote the set of
all such decoders, Gid = {g̃ | g̃ ∈ G, g ◦m ◦ g−1 = g̃ ◦m ◦ g̃−1}. If Gid = {g} then we have
shown that the problem is exactly identified, which means that if we manage to find a g̃
that satisfies (2), then g̃ = g; but if Gid, also includes other functions g̃ 6= g, then these
functions are the sources of non-identifiability.

Equivariant mechanisms To see an example of a setting where the problem is not
exactly identified, consider a mechanism which is equivariant with respect to some bijective
transformation a : Z → Z. A mechanism m is said to be equivariant w.r.t a if a◦m = m◦a.
For example, a mechanism derived from Newtonian mechanics may be equivariant with
respect to your choice of units of measurement, such that m(cz) = cm(z) for some scaling
constant c. Similarly, if a mechanism transforms sets of items, any permutation of z would
lead to a corresponding permutation of the mechanism’s output.

If we have a mechanism that is equivariant with respect to some transformation a
(where a is not identity map), that implies that there exists a function g̃ 6= g in Gid, so the
problem is not exactly identified. We can see this as follows,

g ◦m ◦ g−1 = g ◦ a−1 ◦ a ◦m ◦ g−1 = g ◦ a−1 ◦m ◦ a ◦ g−1 = g̃ ◦m ◦ g̃−1

where the first equality uses the fact that a−1 ◦ a is the identity function, the second
applies the definition of equivariance, and the final equality defines g̃ := g ◦ a−1 and
g̃−1 := a ◦ g−1. This shows that if the mechanism is equivariant, an encoder, g̃−1, can
output a transformed z̃ = a(z), and the decoder, g̃, inverts this transformation before
producing its output, thereby leaving the observed variables, x, unchanged. If we denote the
set of all equivariances of the mechanism E = {a | a is a bijection, a ◦m = m ◦ a}, then we
can define the set of all such sources of non-identification as, Geq = {g̃ | g̃ = g ◦ a−1, a ∈ E}.
This is a natural source of non-identification: given that we are relying on the mechanism
to constrain the encoder g̃−1, it is unsurprising we cannot prevent transformations that
are not affected by the mechanism. The more interesting observation, which we will show
below, is that this set is the only source of non-identification when the mechanism is known,
and hence we recover the true z up to equivariances in the mechanism.

To state this theorem, we first define the notion of identifiability up to an equivalence
class defined by a family of bijections A, where a ∈ A is a map a : Z → Z.
Definition 1. Identifiability up to A. If the learned encoder g̃−1 and the true encoder
g−1 are related by some bijection a ∈ A, such that g̃−1 = a◦g−1 (or equivalently g̃ = g◦a−1),
then g̃−1 is said to learn g−1 up to bijections in A. We denote this g̃−1 ∼A g−1.

Suppose, for example, A is a family of a permutations. Identifiability up to A implies
that the true latent variables will be recovered, but that they would not necessarily be
ordered in the same way as they were in the original data generation process. In this setting
where the mechanism, m, is known, the following theorem shows that A is just E , the set
of equivariances of m.

Theorem 2.1. If the data generation process follows (2), then the set of autoencoders that
are consistent with the mechanism’s transitions Gid = Geq, the set of decoders transformed
by some a ∈ E (the equivariances of m), and hence, the encoders that solve the observation
identity in (3) identify true encoder g−1 up to equivariances of m, such that g̃−1 ∼E g−1.
Proof. First we show that Gid ⊆ Geq. Consider a g̃ ∈ Gid. For each x ∈ X

g ◦m ◦ g−1(x) = g̃ ◦m ◦ g̃−1(x)

g̃−1 ◦
(
g ◦m ◦ g−1(x)

)
= g̃−1 ◦

(
g̃ ◦m ◦ g̃−1(x)

)
(Compose g̃−1 with both sides)

g̃−1 ◦
(
g ◦m ◦ g−1(x)

)
= m ◦ g̃−1(x) (g̃−1 ◦ g̃(z) = z)

5



Since g is invertible we can substitute x in the above equation with x = g(z) and obtain
for each z ∈ Z (

g̃−1 ◦ g
)
◦m ◦

(
g−1 ◦ g(z)

)
= m ◦

(
g̃−1 ◦ g(z)

)
(
g̃−1 ◦ g

)
◦m(z) = m ◦

(
g̃−1 ◦ g

)
(z) (4)

Define g̃−1 ◦ g = a. Observe that a is invertible and from (4) we gather that a ∈ E . Also,
since g̃ = g ◦ a−1, we can conclude that g̃ ∈ Geq, which proves the first part of the claim.
For the second part, we show that Geq ⊆ Gid.

Consider a g̃ ∈ Geq = {g̃ | g̃ = g ◦ a−1, a ∈ E}. By definition, can express g̃ = g ◦ a−1.
For each x ∈ X we write

g̃ ◦m ◦ g̃−1(x) =
(
g ◦ a−1

)
◦m ◦

(
g ◦ a−1

)−1
(x)

=
(
g ◦ a−1

)
◦m ◦

(
a ◦ g−1

)
(x)

=
(
g ◦ a−1

)
◦ a ◦m ◦ g−1(x)

= g ◦m ◦ g−1(x)

Observe that g̃ is both a bijection and satisfies the identity in (2). Therefore, g̃ ∈ Gid. This
proves the second part of the claim. Therefore, Gid = Geq.

From Theorem 2.1, we can derive a number of observations. First, notice that if we
have a standard autoencoder6 then the mechanism is the identity map, m(z) = z, and its
set of equivariances E is any invertible function a, and hence Theorem 2.1 shows that the
encoder is essentially unconstrained. However, if the mechanism is any non-trivial function,
m(z′) 6= z′ for some z′, then the space of possible encoders is significantly reduced to just
those invertible transformations that commute with m. If the system involves multiple
known mechanisms, {m1, . . . ,mT }, where at each time zt+1 = mt(zt), then the encoder is
even further constrained. Define the set of all the mechanisms that are used at least once
in the evolution of the system asM∗ = ∪Tt=1{mt}. Suppose E i denotes the equivariances of
mi ∈M∗. Define the equivariances that are shared across all the mechanisms as E∗ = ∩iE i;

Corollary 1. If the data generation process follows (1), then the encoders that satisfy
observation identity in (3) for all m ∈M∗ identify true encoder g−1 up to the equivariances
shared across all the mechanisms inM∗, E∗ (g̃−1 ∼E∗ g−1).

The proof of the above claim is in Section A.2. This corollary implies a blessing that
comes with more complex environments: if an object is transformed by multiple mechanisms
which are diverse (in the sense that they share few equivariances), then it becomes easier
to identify. Given access to inputs and outputs of a mechanism, if we cannot tell apart
whether some transformation was applied to the input or the output, then the mechanism
is equivariant with respect to the transformation. Together Theorem 2.1 and Corollary 1,
state that we can learn to invert the data generation process but we cannot distinguish
latents that were transformed by equivariances shared across the mechanisms.

2.1.1 Identifying encoders for affine mechanisms

Theorem 2.1 shows us that an encoder g̃−1 is identified up to any equivariances of the
known mechanism, but given some mechanism, it does not tell us what equivariances may
exhibit. This section gives an example of how one might go about finding all sources of
equivariance for a given mechanism. We derive the equivariances for affine mechanisms,
and in doing so we show conditions under which affine mechanisms lead to identification up

6With the constraint that the encoder is the inverse of the decoder such that g̃−1 is bijective.
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to some fixed offset. Affine mechanisms are broadly applicable because with a sufficiently
short time interval, they approximate a wide variety of physical systems as the Euler
discretization of some linear ordinary differential equation. In such systems, the mechanism
is given by m(z) = Mzt + bt where M ∈ Rd×d is an invertible diagonalizable matrix (with
eigendecomposition given as M = SΛS−1, where S is the matrix of eigenvectors and Λ is a
diagonal matrix of eigenvalues), bt ∈ Rd is the offset parameter at time t,

and the analog of (2) is,

xt+1 = g(Mg−1(xt) + bt).

We search for some encoder g̃−1 such that this relationship holds for all x and t. Define an
offset function o(z) = z+ p, where the offset function shifts the latent by a vector p. Define
O to be the set of all the offset functions. We show that the encoder is identified up to O
when we have at least two distinct offset terms bt and a regularity condition (Assumption
2).7

Assumption 1. In the data generation process in (1), we set m(zt) = Mzt + bt, where M
is invertible and diagonalizable. We assume that the offset bt takes at least d+ 1 distinct
values, which we denote by {b1, · · · , bd+1}. The set {b2 − b1, · · · , bd+1 − b1} of vectors is
linearly independent.

Assumption 2. a : Z → Z is analytic and satisfies the following assumption. For each
component i ∈ {1, · · · , d} of ai(z) and each b ∈ Rd, define the set Sij = {θ | ∇jai(z + b) =
∇jai(z) +∇2

jai(θ)b, z ∈ Rd}. Each set Sij has a non-zero Lebesgue measure in Rd.

Theorem 2.2. If the data generation process follows (1) with affine mechanisms, m(z) =
Mzt + bt, Assumptions 1, 2 hold, the eigenvalues of the mechanism M are all distinct, and
each component of S−1(bi − bj) is non-zero for some i 6= j, then the encoders that solve the
observation identity in (3) identify true encoder g−1 up to offsets O such that g̃−1 ∼O g−1.

The proof is given in Section A.3 in the Appendix. The above theorem shows the power
of using multiple mechanisms. It can be shown that if there is only one mechanism, then
we cannot do better than linear identification. However, if we use two mechanisms as is
the case in the above theorem, the constraint of shared equivariances (Theorem 2.1 and
Corollary 1) enforces almost exact identifiability (only offset-based errors remain).

2.2 Identifying encoders when the mechanisms are not known

We have seen in the previous section that with complete knowledge of the mechanisms
under which a system evolves, we can learn an encoder up to equivariances. In practice,
however, we are unlikely to have such complete knowledge. In this section, the system still
evolves according to some deterministic mechanism, zt+1 ← mt(zt), but we assume that
you only know some hypothesis classM of possible mechanisms which could have been
used, without knowing which mt ∈M is used at every time step.

A candidate solution now needs to propose both an encoder g̃−1 and a mechanism
m̃t ∈M for every (xt, xt+1) pair such that,

xt+1 = g̃ ◦ m̃t ◦ g̃−1(xt).

As before, this relationship holds for all xt ∈ X , where xt+1 is generated from mt, so any
candidate solution that is consistent with the x’s that we observe must satisfy

g ◦mt ◦ g−1 = g̃ ◦ m̃t ◦ g̃−1. (5)
7We conjecture that the regularity condition holds for all analytic functions and is thus not needed.

Since we do not have a proof of this claim, we include it as an assumption.
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We define the set of all decoders g̃ (with corresponding encoders g̃−1) that solve (5) as
G̃id = {g̃|g̃ is a bijection , g ◦mt ◦ g−1 = g̃ ◦ m̃t ◦ g̃−1}. This set looks very much like the
set Gid that we defined in Section 2.1, but the fact that we have to select m̃ ∈ M rather
than knowing the true m implies a new source of non-identifiability: imitator mechanisms.

We partition the hypothesis class of mechanisms,M =M∗ ∪M′ , into the mechanisms
that are used at least once in the evolution of the system, M∗ (M∗ = ∪Tt=1{mt}), and
mechanisms which are hypothesized but not used,M′ .

Definition 2. Equivariances and imitators w.r.t M. Define a set of functions Ẽ
that satisfy commutativity w.r.t the set of mechanisms M in the following sense. The
set Ẽ comprises of all the bijections, a(·), that satisfy the following condition. If for each
m1 ∈M∗, ∃ m2 ∈M such that a ◦m1 = m2 ◦ a, then a ∈ Ẽ.

The set Ẽ consists of two types of elements. We illustrate this through an example of
setM = M∗ = {m1,m2}. If a is a bijection that commutes with both m1 and m2, i.e.,
a ◦m1 = m1 ◦ a and a ◦m2 = m2 ◦ a, then a ∈ Ẽ . From this we can see that Ẽ consists of
elements in the intersection of the equivariances of the respective mechanisms. Alternatively,
if a satisfies a◦m1 = m2◦a and a◦m2 = m1◦a, then we saym2 “imitates” m1 and vice-versa
because you can produce m1’s output from m2 for any z using the following relationship
m1 = a−1 ◦m2 ◦ a. Further simplifcation of this yields that a2 = a ◦ a is an equivariance of
both m1 and m2. This example shows that when we know the list of mechanismsM =M∗
but do not know which mechanism is used, the set Ẽ can be expressed in terms of the
equivariances of the mechanisms. For further details see the Appendix Section A.9. Define
the set of maps that are identified up to Ẽ as G̃eq = {g̃ | g̃ = g ◦ a−1, a ∈ Ẽ}.

Theorem 2.3. If the data generation process follows (1), then G̃id = G̃eq and hence, the set
of all the encoders that satisfy (5) identify true encoders g−1 up to bijections that commute
with the setM, Ẽ (g̃−1 ∼Ẽ g

−1).

The proof of the above is in Section A.4 of the Appendix. Equivariances and imitators
play similar roles in the way that they relax constraints on the encoder g̃−1—any bijection
that commutes with either is a source of non-identifiability—but they are different from
the perspective of how we should think about designing representation learning algorithms.
Recall thatM is composed of two sets of mechanisms,M =M∗ ∪M′ , mechanisms inM∗
that are used at least once in the evolution of the environment and those mechanisms in
M′ which are hypothesized but never used. Equivariances are dictated only byM∗, which
characterizes the evolution of the environment. Any increases to the number of distinct
mechanisms in M∗ will potentially decrease the number of equivariances shared by all
mechanisms. This can only be achieved by modifying the environment in some way, either
through an explicit intervention that modifies it’s mechanisms or by collecting data from
multiple environments with diverse of mechanisms. For example, in bouncing balls example
given in Figure 1, one could change the environment by varying the mass of the balls or
observing it under different gravity conditions; or one could intervene by, say, changing the
shape of balls in the system such that you get a different bouncing mechanism.

Imitators, by contrast, are a function of both the mechanismsM∗ that were used and
those that were hypothesized,M′ . An imitator is just some mechanism that can imitate
another via some bijection, so one would expect that as we grow the number of mechanisms
inM, the size of the set of imitators can only grow; but interestingly, this is not always
the case for mechanisms fromM∗. Recall that any a ∈ Ẽ produces an encoder of the form
g̃−1 = a◦g−1, so the same transformation has to be used for all imitations and equivariances
among the mechanisms inM∗. Because of this, it is possible that increasing the size of
M∗ reduces the number of imitators. For example, if there is some mechanism, mi, that
does not commute with any non-trivial a in Ẽ (either by imitation or equivariance), then
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adding mi toM∗ will make the problem exactly identified. On the other hand, growing
the size of the set of unused mechanisms,M′ , can result in significant non-identifiability.
For example, ifM consisted of a flexible class of functions (e.g. a multi-layer perceptron)
then it would be easy to construct imitators of the form m1 = a−1 ◦m2 ◦ a.

Illustrating Theorem 2.3. We consider the same setting as in Theorem 2.2. For each
t ∈ {1, · · · , d+ 1}, m(zt) = Mzt + bt and xt = g(zt). We only know that the mechanism
is affine and only the offset bt is changing, but parameters M and bt are not known. Let
us construct the set Ẽ corresponding to the above setting. We can show that the set Ẽ
consists of affine functions (See the Appendix A.5 for details). From Theorem 2.3, we can
thus conclude that for this data generation process even with very little knowledge of the
mechanism, we get linear identifiability. This is weaker than the offset based identifiability
in Theorem 2.2, but there we were required to know the entire affine mechanism.

3 Stochastic mechanisms

The results thus far relied on the assumption that the evolution of a system could be
described in terms of deterministic mechanisms. This deterministic approach models
settings where the full latent state is observable (via some unknown encoder g−1) at a
short enough time interval that there is no uncertainty about the system’s evolution. To
generalize to cases where there is some uncertainty about the latent state’s evolution,
we now develop analogous identification results for stochastic mechanisms that induce
conditional distributions over latent states.The systems evolves as

Xt ← g(Zt), Zt+1 ← mt(Zt, Ut), (6)

where each Ut is noise with each component sampled independently from standard uniform
distribution Uniform[0, 1], Z1 ∼ PZ , mt : Z × [0, 1]d → Z, and the decoder g : Z → X is
a diffeomorphism (i.e. a smooth bijection with an invertible Jacobian, see definition A.1
(Kass & Vos, 2011)).

In this section, we will focus on the case where the true mechanism is unknown; the
case where mechanism is known is a special case with no imitator, i.e., m̃t = mt for all
t. The goal is to search for an encoder g̃−1, which is a diffeomorphism, that generates
X̂t+1 = g̃ ◦ m̃t(g̃

−1(xt), Ût), where Ût is a random vector with each component from
Uniform[0, 1]. In the deterministic case, we had required that any candidate encoder, g̃−1,
was point-wise consistent with the pairs of observations (xt+1, xt). Here, encoders are only
required to match the observed conditional distributions. An encoder that is consistent with
the observed data can be used to generate X̂t+1 such that the distribution of X̂t+1|Xt = xt
matches the distribution of Xt+1|Xt = xt for all xt ∈ X ,

Xt+1|Xt = xt
d
= X̂t+1|Xt = xt

g ◦mt

(
g−1(xt), Ut

) d
= g̃ ◦ m̃t

(
g̃−1(xt), Ût

) (7)

Now, define the set of all candidate decoders g̃ (with corresponding encoders g̃−1) that
solve the above (6) as Gsid. We can extend the notion of equivariance and imitation to the
stochastic case by replacing equality in value by equality in distribution, and show that,
as before, these are the only sources of non-identifiability. In the special case where mt is
known, Ẽ s, defined below, only contains maps that result from equivariance. We continue to
use theM∗ – set of mechanisms that are used at least once in the evolution of the system
andM – hypothesis class of all the mechanisms.

Definition 3. Equivariance and imitators in distribution w.r.tM. Define a set of
functions E s that satisfy commutativity w.r.t the set of distributionsM in the following sense.
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The set E s comprises all the diffeomorphisms a that satisfy the following condition: a ∈ Es if
and only if for each m ∈M∗, ∃ m′ ∈M such that for all z ∈ Z, a ◦m(z, U)

d
= m

′
(a(z), U),

where each component of U is sampled independently from Uniform[0, 1] .

Define the set of maps that identify true g up to E s as Gseq = {g̃|g̃ = g ◦ a−1, a ∈ Es}

Theorem 3.1. If the data generation process follows (6), then Gsid = Gseq and hence, the
set of encoders that solve stochastic observation identity (7) identify the true g−1 up to the
equivariances and imitators in distribution w.r.tM, E s(g̃−1 ∼Es g−1).

The proof of the above is provided in Section A.6 in the Appendix. Theorem 3.1 is
consistent the results that we developed for the deterministic case (Theorem 2.3), but
because the mechanism is allowed to be stochastic, it allows us to generalize known results
based on distributional assumptions; we give an example of this in the next section.

4 A mechanism-based perspective on existing results

Our primary motivation for understanding how mechanistic knowledge can aid identification,
is to develop methods that do not require independence assumptions over the latent variables.
However, independence assumptions are not incompatible with the mechanism-based
perspective: they simply define a particular kind of mechanism, which then implies
identification up to the mechanism’s associated equivariances and imitators. We demonstrate
this by re-deriving recent identification results from Klindt et al. (2020) using the mechanisms
implied by their respective distributional assumptions. We begin by describing the data
generation process used by Klindt et al. (2020) as a stochastic mechanism of the form of
(6). For each t ∈ {1, · · · , T}

Zt+1 = Zt + Vt, Vt = f(Ut), Ut ∼ Uniform[0, 1]d (8)

where f is an inverse CDF such that each component of Vt ∈ Rd is sampled from the
generalized Laplace distribution centred at zero with norm parameter α 6= 2, Z1 ∼ PZ .
Next, we want to use Theorem 3.1 to derive all the solutions to the observation identity in
(7).

Theorem 4.1. If the data generation process follows (8), and PZ and the parameters
defining f are known (same assumption as in Klindt et al. (2020)), then the solution to
the stochastic observation identity (7) leads to identifying the true representations up to
permutation, sign-flip and offset.

The proof is given in Section A.7 in the Appendix. The above theorem generalizes
Theorem 1 from Klindt et al. (2020) as we do not require α < 2 and rather we work with
α 6= 2. Alternatively, analogous results to those in Klindt et al. (2020) can be derived in
settings where we do not know the distribution of Vt but instead assume that we observe Xt

often enough that the difference between Zt and Zt+1 is small. In particular, suppose that
the data generation process follows (8) except each component of Vt is an i.i.d. draw from
a non-Gaussian with zero mean and |Vt| < δ. Then as δ → 0 the true latent is identified up
to permutation, sign-flip and offset. See Section A.8 for details.

5 Related works

Non-linear independent component analysis (ICA) is a highly unidentified problem; several
works (Hyvärinen & Pajunen, 1999; Locatello et al., 2019) have shown that it is impossible
to invert the data generation process without placing restrictions on the data and models.
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Approach Assumptions

Time contrastive (Hyvarinen & Morioka,
2016)

Zt ← Ut, each U
j
t is independent and non-stationary

Permutation contrastive (Hyvarinen &
Morioka, 2017)

Each Zjt+1 ← m(Zjt , U
j
t ), stationary and not

quasi-Gaussian
Slow VAE (Klindt et al., 2020) Zt+1 ← Zt + f(Ut), each f(U it ) is independent and

generalized Laplace
Conditional VAE (Khemakhem et al.,
2020a; Hyvarinen et al., 2019)

Z ← m(O,U), all components of Z are independent
conditional on O

Independently modulated component
analysis (Khemakhem et al., 2020b)

Z ← m(O,U), m has a special structures allowing to
relax conditional independence

Contrastive learning (Zimmermann et al.,
2021)

Z̃ ← m(Z,U), m is such that Z̃ ∼ conditional von
Mises-Fisher

Table 1: Table comparing different works and the assumptions made for identifiability.

In recent years, a lot of progress has been made on the problem of non-linear identification.
Hyvarinen & Morioka (2016, 2017) provide the first proofs for identification in non-linear ICA.
Hyvarinen & Morioka (2016) showed that if the latent variables are mutually independent,
with each component evolving in time following a non-stationary time series without
temporal dependence, then non-linear identification is possible. Hyvarinen & Morioka
(2017) showed that non-linear identification is also possible if the latent variables are
mutually independent, with each component evolving in time following a stationary time
series with temporal dependence. In Hälvä & Hyvarinen (2020), the authors combine
non-stationarity (Hyvarinen & Morioka, 2016) and temporal dependency (Hyvarinen &
Morioka, 2017) and extend identifiability guarantees in somewhat more general settings.
Khemakhem et al. (2020a); Hyvarinen et al. (2019); Khemakhem et al. (2020b) further
generalized the previous results; in these works instead of using time the authors require
observation of auxiliary information. Klindt et al. (2020) departs from other non-linear ICA
works as it explicitly exploits the sparsity in the transitions of the latent variables (further
details on Klindt et al. (2020) can be found in the previous section.). In Zimmermann et al.
(2021), the authors show that minimizing contrastive losses commonly used in self-supervised
learning can also guarantee identification provided the data (contrastive pairs) follow a
specific choice of data generation process (e.g., contrastive pair is generated from a von
Mises-Fisher distribution). In another line of work Locatello et al. (2020); Shu et al. (2019),
the authors study the role of weak supervision in assisting disetanglement. In a recent
work, Gresele et al. (2021), propose to add new form of constraints to non-linear ICA.
The constraint is based on the observation that the decoder g that gives rise to the image
x is composed of simpler functions that are mutually algorithmically independent; the
authors exploit this inductive bias on the structure of g to invert the data generation
process. In Section 4 we argued that many of the existing distributional assumptions could
be interpreted as particular choices of stochastic mechanisms; for more details, see Table 1,
where we describe the form of the respective mechanisms. In short, prior work has focused
on identification guarantees under assumptions on the dependence between the different
random variables, which is in sharp contrast to our approach, which focuses on identification
under varying degrees of the knowledge of mechanisms that govern latent dynamics.

Equivariance There is significant recent interest in leveraging equivariance assumptions
to design more efficient deep network architectures; for a recent survey, see Bronstein et al.
(2021). The general recipe of this line of work is to design functions (deep network
architectures) that enforce equivariances. Our setting inverts this recipe, in that we
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have some known function, m(z), and we are interested in finding all of its equivariances.
The relationship between distributions and their equivariances has a long history in the
statistics literature (see e.g. Eaton, 1989, and the references therein). Our characterization of
stochastic equivariances was inspired by the functional representations given in Bloem-Reddy
& Teh (2020). Finally, the importance of group symmetries in representation learning was
discussed in Higgins et al. (2018). Higgins et al. focus on the relationship between the
symmetries of the environment and a model’s representations, whereas we focus on how
symmetries in the environment’s transition function constrain the representation. The two
perspectives are complementary, and in future work we hope to unify them.

6 Discussion and limitations

This paper has presented the first systematic study of how mechanisms governing the
dynamics of high-level variables can be used to identify these variables from low-level
observations, and up to what equivariances, which depend on the mechanisms. We show
that this perspective is both powerful—yielding significant constraints in the space of possible
representation—and that it generalizes many known approaches. There are, however, a
number of open problems that need to be addressed to make this approach practical.
First, we have not specified a particular loss function to select g̃; the observation identity
immediately implies a reconstruction-based loss, but other losses such as contrastive losses
may be more beneficial. Second, there is not yet a general approach to enforcing invertibility
while mapping between different sized spaces, so maintaining bijectivity is a challenge.
And finally, while we provide a characterization of identifiability when mechanisms are not
known, a natural follow-up question is how to use those insights to build methods that
allow one to learn both the mechanism and the representation.
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A Appendix

A.1 Linear mechanism M and linear G.

The focus of the main text is on nonlinear identification, but in this section we show how
the analysis for general functions g and m applies to the special case when g and m are
linear and affine maps respectively. This special case is useful both as a concrete example,
and as a stepping stone to Theorem 2.2 (nonlinear g with affine m) which will reuse some
of the same proof strategies. We write the data generation process as follows.

zt+1 = Mzt + b,

xt = Gzt,
(9)

where M ∈ Rd×d is a diagonalizable matrix describing the mechanism, b ∈ Rd is the
offset parameter, G ∈ Rd×d is an invertible matrix determining how the data transforms
from latent space to the observable space. We write the eigendecomposition of M as follows
M = SΛS−1, where S is the matrix of eigenvectors and Λ is a diagonal matrix of the
eigenvalues. On the same lines as the (2), we can obtain an identity between xt and xt+1

as follows.

zt+1 = Mzt + b

G−1xt+1 = MG−1xt + b

xt+1 = GMG−1xt +Gb

If the learner knows M and b, it tries to solve for an invertible G̃ that satisfies

xt+1 = G̃MG̃−1xt + G̃b (10)

Theorem A.1. If the data generation process follows (9) and the eigenvalues of the
mechanism M are all distinct and each component of the vector S−1b is non-zero, then the
only solution to the identity in (10) is the true mechanism G.

Proof. We take the difference of the equations A.1 and 10 to get the following condition.
For each xt ∈ Rd

(GMG−1 − G̃MG̃−1)xt + (G− G̃)b = 0 (11)

Because, equations A.1 and 10 hold for all xt, we can substitute xt = 0 in the above to get

(G− G̃)b = 0 (12)

We plug the above condition in (12) back into (11) to get the following condition. For each
xt ∈ Rd

(GMG−1 − G̃MG̃−1)xt = 0 (13)

If (13) holds for d linearly independent vectors xt ∈ Rd, then we can conclude that,

GMG−1 − G̃MG̃−1 = 0

G−1
(
GMG−1 − G̃MG̃−1

)
= 0

MG−1 −G−1G̃MG̃−1 = 0(
MG−1 −G−1G̃MG̃−1

)
G̃ = 0

MG−1G̃ = G−1G̃M (14)
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Let A = G−1G̃. We substitute A and the eigendecomposition of M (M = SΛS−1,
where Λ = diag(λ1, · · · , λd)) in (14) to get

M = AMA−1

SΛS−1 = ASΛS−1A−1

Λ =
(
S−1AS

)
Λ
(
S−1A−1S

)
Λ = CΛC−1 (where C = S−1AS)

ΛC = CΛ (15)

We further simplify (15) and compare each element of the matrix ΛC and CΛ to get the
following condition. For all i, j ∈ {1, · · · , d}

[ΛC]ij = Cijλi, [CΛ]ij = Cijλj

Cij(λi − λj) = 0 (16)

Consider the above (16) for i 6= j to get

Cij(λi − λj) = 0 =⇒ Cij = 0 (we use the assumption that λi 6= λj)

From the above, it follows that C is a diagonal matrix. We obtain an expression for A in
terms of C matrix below.

S−1AS = C

A = SCS−1

From (12) we get that

(G− G̃)b = 0
G̃=GA
=⇒ (I −A)b = 0

Eqn. (A.1)
=⇒ (I − SCS−1)b = 0

=⇒︸ ︷︷ ︸
Left multiply S−1

S−1b− CS−1b =⇒ (C − I)S−1b = 0 (17)

Since C is a diagonal matrix, we can simplify the above condition further to get (cii −
1)(S−1b)i = 0. Since (S−1b)i 6= 0 =⇒ cii = 1, we obtain C = I =⇒ G−1G̃ = I =⇒ G =
G̃.

A.2 Proof of Corollary 1

Proof. This proof follows essentially the same strategy as the proof of Theorem 2.1 with a
set of mechanisms,M∗ instead of a single mechanism m; we include it for completeness.
First we show that G∗id ⊆ G∗eq.

Consider a g̃ ∈ G∗id. For each x ∈ X and for each m ∈M∗

g ◦m ◦ g−1(x) = g̃ ◦m ◦ g̃−1(x),

and by following the same steps as the proof of Theorem 2.1, we can show that,(
g̃−1 ◦ g

)
◦m(z) = m ◦

(
g̃−1 ◦ g

)
(z) (18)

As before, define g̃−1 ◦ g = a. Observe that a is invertible and from (18) we gather that
a ∈ E∗. Also, since g̃ = g ◦ a−1, we can conclude that g̃ ∈ G∗eq, which proves the first part
of the claim. In the second part, we need to show that G∗eq ⊆ G∗id.
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Consider a g̃ ∈ G∗eq = {g̃ | g̃ = g ◦ a−1, a ∈ E∗}. By definition, can express g̃ = g ◦ a−1.
For each x ∈ X and for each m ∈M∗ we write,

g̃ ◦m ◦ g̃−1(x) =
(
g ◦ a−1

)
◦m ◦

(
a ◦ g−1

)
(x)

=
(
g ◦ a−1

)
◦ a ◦m

(
g−1(x)

)
(since a commutes with each m ∈M)

= g ◦m ◦ g−1(x) for all m

Observe that g̃ is both a bijection and satisfies the observation identity in (3). Therefore,
g̃ ∈ G∗id. This proves the second part of the claim. Therefore, G∗id = G∗eq.

A.3 Proof of Theorem 2.2

Proof. We showed in Theorem 2.1 that the only source of non-identifiability are the
bijections, a, in the set E ; our task here is to explicitly find all of these bijections for
affine mechanisms. If a ∈ E , then it satisfies a ◦m = m ◦ a. We replace m with the affine
mechanism to obtain the following condition. For each z ∈ Rd

a(Mz + b) = Ma(z) + b (19)

Next, recall that a : Rd → Rd; we take gradient of the function in the LHS and RHS of
the above (19) separately w.r.t z. Consider the jth component of a(Mz + b) denoted as
aj(Mz + b). We first take the gradient of aj(Mz + b) w.r.t z

∇zaj(Mz + b) =
(dy
dz

)T
∇yaj(y),

where y = Mz + b, ∇yaj(y) is the gradient of aj w.r.t y and dy
dz denotes the Jacobian of y

w.r.t z. We simplify the above further to get

∇zaj(Mz + b) = MT∇yaj(y) = MT∇yaj(Mz + b)

We can write the above for each component of a as follows.

[
∇za1(Mz + b), · · · ,∇zad(Mz + b)

]
=
[
MT∇ya1(Mz + b), · · · ,MT∇yad(Mz + b)

]
= MT[∇ya1(Mz + b), · · · ,∇yad(Mz + b)] = MTJT(Mz + b),

(20)

where J(Mz + b) is the Jacobian of a computed at Mz + b. Next, we take the gradient of
the jth component of the RHS in (19) and let mj denote the jth column of M ,

∇z
[
mT
j a(z) + bj ] =

∑
i

mji∇zai(z) =
[
∇a1(z), · · · ,∇ad(z)

]

mj1

mj2
...

mjd


We can write the above for each component in the RHS of (19) as follows

[
∇z
[
mT

1 a(z)+b1
]
, · · · ,∇z

[
mT
d a(z)+bd

]]
=
[
∇a1(z), · · · ,∇ad(z)

]

m11, · · · ,md1

m12, · · · ,md2
...

...
m1d, · · · ,mdd

 = JT(z)MT

(21)
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We equate the gradient of LHS and RHS in (19) using the expressions derived in (20)
and (21) to obtain

a(Mz + b) = Ma(z) + b =⇒ MTJT(Mz + b)− JT(z)MT = 0 (22)

We write the same expression at another offset b′ 6= b below

a(Mz + b
′
) = Ma(z) + b =⇒ MTJT(Mz + b

′
)− JT(z)MT = 0 (23)

Taking the difference of (22) and (23) we get MTJT(Mz+ b) = MTJT(Mz+ b
′
). Since

M is invertible, we get J(Mz + b) = J(Mz + b
′
). Consider row j of this identity. For each

z ∈ Rd

∇aj(Mz+b)−∇aj(Mz+b
′
) = 0 =⇒ ∇aj(z̃)−∇aj(z̃+b

′−b) = 0 =⇒


∇2

1aj(θ1)
∇2

2aj(θ2)
...

∇2
daj(θd)

 (b−b′) = 0

where ∇2aj is the Hessian of aj and ∇2
kaj(θk) corresponds to the kth row of the Hessian

matrix. Note that in the above expansion there is a different θk for each row (mean value
theorem applied to each component of ∇aj yields a different point θk on the line joinining z̃
and z̃+b−b′ . From Assumption 2 and based on the fact thatM is invertible, it follows that
∇2
kaj(θk)(b−b′) = 0 over a measurable set. Since aj is analytic∇2

kaj(z)(b−b′) is also analytic.
Therefore, from (Mityagin, 2015), we can conclude that ∇2

kaj(z)(b− b
′
) = 0 for all z. We

can make the same argument for each component k and conclude that ∇2aj(z)(b− b′) = 0.
From Assumption 1, it follows that ∇2aj(z)(b

j − b1) = 0 for all j ∈ {2, · · · , d + 1} and
since the set {b2 − b1, · · · , bd+1 − b1} is linearly independent ∇2aj(z) = 0 for all z. This
implies a(z) = Az + p. Plug a(z) = Az + p into a(Mz + b) = Ma(z) + b to get

A(Mz + b) + p = MA(z + p) + b =⇒ (AM −MA)z + (A− I)b+ (I −M)p = 0 (24)

We write the same expression for offset b′

A(Mz + b
′
) + p = MA(z + p) + b

′
=⇒ (AM −MA)z + (A− I)b

′
+ (I −M)p = 0 (25)

We take the difference of (24) and (25) to get

(A− I)(b− b′) = 0 (26)

Substitute z = 0 in (24) to get

(A− I)b+ (I −M)p = 0 (27)

Substitute the above condition in (27) into (24) to get the following. For each z

(AM −MA)z = 0 (28)

We can now leverage the proofs from the linear setting in Section A.1. The above (28) is
the same as (14) and the (26) is the same as (17), with b replaced by b− b′ . Following the
same analysis as before, we get that latent variables are exactly identified; we show all the
steps below for completeness. By choosing d linearly independent z and substituting in
(28) we get the following,

MA = AM

M = AMA−1,

SΛS−1 = ASΛS−1A−1,

Λ =
(
S−1AS

)
Λ
(
S−1A−1S

)
,

Λ = CΛC−1,

ΛC = CΛ,
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where C = S−1AS, M = SΛS−1, Λ = diag
(
λ1, · · · , λd

)
. We further simplify (15) and

compare each element of the matrix ΛC and CΛ to get the following condition. For all
i, j ∈ {1, · · · , d}

[ΛC]ij = Cijλi, [CΛ]ij = Cijλj

Cij(λi − λj) = 0
(29)

Consider the above (29) for i 6= j to get

Cij(λi − λj) = 0 =⇒ Cij = 0 (we use the assumption that λi 6= λj)

From the above, it follows that C is a diagonal matrix. We obtain an expression for A in
terms of C matrix below.

S−1AS = C

A = SCS−1

From (26) we get that

(G− G̃)(b− b′) = 0
G̃=GA
=⇒ (I −A)(b− b′) = 0 =⇒ (I − SCS−1)b = 0

=⇒︸ ︷︷ ︸
Left multiply S−1

S−1(b− b′)− CS−1(b− b′) =⇒ (C − I)S−1(b− b′) = 0

Since C is a diagonal matrix, we can simplify the above condition further to get (cii −
1)(S−1(b − b′))i = 0. Since (S−1(b − b′))i 6= 0 =⇒ cii = 1, we obtain C = I =⇒ A =
I =⇒ a(z) = z + p. This proves that the latents are identified up to an offset.

A.4 Proof of Theorem 2.3

Proof. We first show that G̃id ⊆ G̃eq. Consider a g̃ ∈ G̃id. We rewrite (5) below. For all
x ∈ X

g ◦mt ◦ g−1(x) = g̃ ◦ m̃t ◦ g̃−1(x)

(g̃−1 ◦ g) ◦ (mt ◦ g−1(x)) = m̃t ◦ g̃−1(x)

Since g is bijective, we can write x = g(z) to get

(g̃−1 ◦ g) ◦mt(z) = m̃t ◦ g̃−1 ◦ g(z)

Since the above equality holds for all z ∈ Z we can conclude that

(g̃−1 ◦ g) ◦mt = m̃t ◦ (g̃−1 ◦ g),

a ◦mt = m̃t ◦ a,
(30)

The above conclusion in (30) holds for all mt ∈ M∗. Therefore, a in (30) and {m̃t}Tt=1

(where m̃t ∈M) together satisfy the condition that for all m ∈M∗, a ◦m = m̃ ◦ a, where
m̃ ∈M. We can rewrite g̃−1 ◦ g = a as g̃ = g ◦ a−1. From this it follows that g̃ ∈ G̃eq. This
proves the first part of the theorem.

Now let us consider the second part of the theorem. Consider a g̃ ∈ G̃eq. We can write
g̃ = g ◦ a−1, where a ∈ Ẽ . At time t, some mechanism mt ∈M∗ is used to transform the
latents. Since a ∈ Ẽ , select the mechanism m̃t ∈ M for which a ◦mt = m̃t ◦ a and as a
consequence

g ◦mt ◦ g−1 = g ◦ a−1 ◦ m̃t ◦ a ◦ g−1 = g̃ ◦ m̃t ◦ g̃−1

In the first equality above, we use a ◦mt = m̃t ◦ a and in the second equality we use the
definition of g̃. We can repeat the above exercise for all t and corresponding mt using the
same a. Therefore, g̃ is in G̃id. This shows the second part of the theorem, i.e., G̃eq ⊆ G̃id.
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A.5 Leveraging Theorem 2.3 when mechanism is linear and g is non-linear

We write the data generation process as follows. For each t ∈ {1, · · · , d+ 1}

zt+1 = Mtzt + bt,

xt = g(zt),

Let us construct the set Ẽ corresponding to the above setting. For each z ∈ Rd,

a(Mz + b) = M
′
a(z) + b̃ =⇒ MTJT(Mz + b)− JT(z)M

′,T = 0,

a(Mz + b
′
) = M

′
a(z) + b̃

′
=⇒ MTJT(Mz + b

′
)− JT(z)M

′,T = 0, (31)

where (M, b) and (M, b
′
) are the true mechanisms and (M

′
, b
′
) and (M ′, b̃

′
) are the imtitating

mechanisms chosen by the learner, J is the Jacobian of a. Note here the learner only
exploits the knowledge that b changes to b̃, which is why it keeps M ′ fixed and only changes
the offset. We take the difference of the RHS in the above two equations to get

MTJT(Mz + b) = MTJT(Mz + b
′
)

Since M is invertible we get J(Mz + b)− J(Mz + b
′
) = 0 for all z. We can follow the

same justification as was used in (23) to conclude that J(z) is constant and a is thus an
affine map. We substitue the affine map a(z) = Az + p back into (31) to get the following.
For all z

AMz +Abj + p = M
′
Az + b

′,j +M
′
p

Substitute z = 0 to get b′,j = Abj + p−M ′
p. Substitute this condition back into the above

equation, we get AM = M
′
A =⇒ M

′
= AMA−1.

A.6 Proof of Theorem 3.1

Before stating the proof of Theorem 3.1, we state two existing results that we use.
Result 1. (Change of variables formula (DeGroot, 2012)) Given a continuous

random variable X ∈ Rd with pdf pX and its transformation Y = f(X), where f : Rd → Rd
is a diffeomorphism,8 then pY (f(x))|det(Jf (x))| = pX(x), where Jf is the Jacobian of f
computed at x.

Lemma 1. If X and Y are two continuous random variables that take values in Rd that are
equal in distribution, i.e., X d

= Y . If f : Rd → Rd is a diffeomorphism, then f(X)
d
= f(Y ).

Proof. Since X and Y are equal in distribution, they have the same pdfs, i.e. pX(x) = pY (x)
for all x ∈ Rd. We can use the change of variables formula in Resut 1 above to get
the following. Let W = f(X), pX(f−1(w))|det(Jf−1(w))| = pW (w) and let V = f(Y ),
pY (f−1(v))|det(Jf−1(v))| = pV (v). Comparing the two expressions when w = v we get
pW (w) = pV (w). This proves the result.

We stated Result 1 and Lemma 1 for continuous random variables. When the random
variables are discrete, Lemma 1 holds for any function f .

Lemma 2. (Kass & Vos, 2011) If f : Z → Z and g : Z → Z are diffeomorphisms, then
f ◦ g is a diffeomorphism.

8http://math.mit.edu/~larsh/teaching/F2007/handouts/changeofvariables.pdf
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Proof. We first show that Gsid ⊆ Gseq.
From the observation identity in (7) we get that g̃, {m̃t}Tt=1 satisfy the following for all

t ∈ {1, · · · , T}

g ◦mt

(
g−1(xt), Ut

) d
= g̃ ◦ m̃t

(
g̃−1(xt), Ût

)(
g̃−1 ◦ g

)
◦mt

(
g−1(xt), Ut

) d
= m̃t

(
g̃−1(xt), Ût

) (32)

In the second step in the above equation, we transformed the random variables in the
first step using the same transform g̃−1. g̃−1 is a diffeomorphism; we compose both sides of
the first step LHS and RHS with g̃−1. We use Lemma 1 to get from the first step to the
second step in the above equation (32). In the above equation xt is a fixed value and the
only source of randomness is from Ut in LHS and Ût in the RHS. We substitute xt = g(zt)
to further simplify the above expression in (32)

(
g̃−1 ◦ g

)
◦mt

(
g−1 ◦ g(zt), Ut

) d
= m̃t

(
g̃−1 ◦ g(zt), Ût

)
(
g̃−1 ◦ g

)
◦mt

(
zt, ut

) d
= m̃t

(
g̃−1 ◦ g(zt), Ût

)
Substitute a = g̃−1 ◦ g in the above to get the following

a ◦mt

(
zt, Ut

) d
= m̃t

(
a(zt), Ût

)
a ◦mt

(
zt, Ut

) d
= m̃t

(
a(zt), Ut

)
From Lemma 2 it follows that a in the above is a diffeomorphism. Since we assume that
∪Tt=1{mt} = M∗ it follows that a in (30) and {m̃t}Tt=1 (where m̃t ∈ M) together satisfy
the condition for membership in E s. Since g̃ = g ◦ a−1 we obtain that g̃ ∈ Gseq.

We now show that Gseq ⊆ Gsid. Consider a g̃ ∈ Gseq. We use g̃ = g ◦ a−1, where a ∈ E s to
simplify the following random variable

g ◦mt(g
−1(xt), Ut) =

(
g ◦ a−1 ◦ a

)
◦mt(g

−1(xt), Ut) = g̃ ◦ a ◦mt(g
−1(xt), Ut) (33)

Since a ∈ Es we have

a ◦mt(g
−1(t), Ut

) d
= m̃t

(
a ◦ g−1(xt), Ut

)
From Lemma 2 it follows that g̃ is a diffeomorphism. From Lemma 1 it follows that

g̃ ◦ a ◦mt(g
−1(xt), Ut)

d
= g̃ ◦ m̃t(a ◦ g−1(xt), Ut) = g̃ ◦ m̃t(g̃

−1(xt), Ut) (34)

Combining (33) and (34) and using the fact that Ût
d
= Ut we get

g ◦mt(g
−1(xt), Ut)

d
= g̃ ◦ m̃t(g̃

−1(xt), Ut)
d
= g̃ ◦ m̃t(g̃

−1(xt), Ût)

From the definition of E s it follows with the same choice of a the condition continues to
hold for all mt ∈M∗. Therefore, g̃ ∈ Gsid. This proves the second part of the theorem.
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A.7 Proof of Theorem 4.1

Proof. In Theorem 3.1, we showed that all the solutions to the observation identity in (7)
can be characterized in terms of the equivariances in distribution defined by the set E s.
Let us analyze the set E s for the class of mechanisms considered in Klindt et al. (2020).
Consider a a ∈ Es. For each z ∈ Rd

a(z + V )
d
= a(z) + V̂ , (35)

Define Ŷ = a(z) + V̂ . Since V̂ d
= V we write the probability density function (pdf) of Ŷ as

fŶ (y) = fV (y − a(z)) (36)

Define Y = a(z + V ). a : Rd → Rd is a diffeomorphism. We use the change of variables
result (Result 1) to write the pdf Y as follows. For each y ∈ Rd

fY (y) =
1∣∣∣det(J(a−1(y)

))∣∣∣fV
(
a−1(y)− z

)
, (37)

where J(a−1(y)) is the Jacobian of a computed at a−1(y), and det is the determinant.
We substitute (36) and (37) in the equivariance condition in (35) to obtain the following.

For each y ∈ Rd

Y
d
= Ŷ

fV (y − a(z)) =
fV (a−1(y)− z)
|det(J(a−1(y)))|

fV (a(w)− a(z)) =
fV (w − z)
|det(J(w))|

,

(38)

where w = a−1(y). In the above we equated the conditionals for each z, we now equate the
marginals.

g ◦ (Z + V )
d
= g̃ ◦ (Ẑ + V̂ )

a ◦ (Z + V )
d
= Ẑ + V̂

(39)

We follow Klindt et al. (2020) and assume Ẑ d
= Z and V̂ d

= V . Therefore, Z+V
d
= Ẑ+V̂ .

We use this condition to restate (39) as

a ◦ (Z + V )
d
= Z + V =⇒ a(W )

d
= W, (40)

where W = Z + V . We translate (40) into the condition on the pdfs as follows. For each
w ∈ Rd

fW (w)|det(J(w))| = fW (w) =⇒ |det(J(w))| = 1 (41)

Substituting the above equation (41) into (38) we get

fV (a(w)− a(z)) =
fV (w − z)
|det(J(w))|

=⇒ fV (a(w)− a(z)) = fV (w − z)

‖a(w)− a(z)‖α = ‖w − z‖α,
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where in the last condition in the above expression we exploit the fact that fV is a generalized
Laplacian distribution. From Mazur-Ulam theorem Nica (2013) it follows that a is affine.
We now write a as a matrix A with offset vector q and simplify the condition in (35).

For each z ∈ Rd we have

A(z + V ) + q
d
= Az + V̂ + q

=⇒ AV
d
= V̂

=⇒ E[AV V TAT] = E[V̂ V̂ T] =⇒ AAT = I

Since A is a square matrix and AAT it follows that ATA = I. Therefore, A is an orthonormal
matrix. Observe that all the elements of V̂ are independent. Since AV d

= V̂ it follows
that all the elements of AV are also independent. Define AV = Q. Observe that A is an
orthonormal matrix that is multiplied with a vector V with all independent elements (each of
which is non-Gaussian as α 6= 2) and outputs a vector that has all independent components.
From Theorem 11 in Comon (1994) we get that A is a composition of permutation and
scaling. Since A is also orthonormal, each term in the diagonal scaling matrix can only be
1 or −1. Therefore, A = ΠΛ, where Π is a permutation matrix and Λ is a diagonal matrix
with +1,−1 elements. Finally, a(z) = ΠΛz + q.

A.8 Alternative identification result for small transitions

Let us analyze the set E s for this class of mechanisms. We assume that the learner knows
that the mechanism is additive, and that the noise components are all independent. In the
analysis below we consider bijections that are analytic (each component of the bijection is
an analytic function). Consider an a ∈ Es

a(z + V )
d
= a(z) + V̂ . (42)

We write the first-order approximation of the above identity below

a(z) + J(z)V
d
= a(z) + V̂

J(z)V
d
= V̂

(43)

where V
d
6= V̂ . Note that the set of solutions a to (42) and (43) become equal in the limit

of δ → 0, where δ is the bound on each component of |V |. We analyze the solution to (43)
below.

E[(J(z)V )(J(z)V )T] = J(z)E[V V T]J(z)T = σ2J(z)J(z)T

σ2E[V̂ V̂ T] = σ2I

σ2J(z)J(z)T = σ2I =⇒ J(z)J(z)T = I =⇒ J(z)TJ(z) = I

Since J(z)V
d
= V̂ and each component of V̂ is independent, we can deduce that all the

components of J(z)V are independent as well. From Theorem 11 in Comon (1994), we can
deduce that J(z) is composed of permutation times a diagonal matrix. Since the matrix is
orthonormal, each scaling component can only be ±1. We can apply this same analysis at
another point z̃ in the neighborhood of z and continue to find that the jacobian matrix is a
permutation times diagonal matrix (that describes sign flips). Note that the permutation
matrix times scaling used to express the Jacobian cannot change between the points z̃ and z
(if it does change then that violates the Jacobian’s continuity). Since the Jacobian is equal
to a fixed permutation times a fixed scaling matrix over a neighborhood, we can extend
this to the entire space (here we use the fact that the a is analytic and Mityagin (2015)).
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A.9 Analyzing Ẽ when M =M∗

In this section, we analyze imitators when we know the set of mechanisms that are deployed,
we do not know which mechanism is used when. If a ∈ Ẽ andM =M∗. From the definition
of a, it follows that for each m ∈M∗, ∃ m′ ∈M∗ such that a ◦m = m

′ ◦ a. We claim that
two distinct m ∈M∗ cannot share the same m′ (imitator). Suppose there was a common
m
′ imitating m and m̃.

a ◦m = m
′ ◦ a

a ◦ m̃ = m
′ ◦ a

We take the difference of the above two equations to get

a ◦m = a ◦ m̃

Since a is a bijection, we can conclude that m = m̃, which is a contradiction of the fact
that m and m̃ are distinct.

This claim implies that for a given a there is an injective map from M∗ to M∗. If
the setM∗ is finite, then from Pigeonhole principle it follows that this injective map is a
bijection.

Let us index the mechanismM∗ = {m1, · · · ,mn}. We call the bijection map π :M∗ →
M∗

Consider the element i. We claim ∃ l ∈ {1, · · · , n} πl(i) = i. We write the chain starting
from i as i→ π(i)→ π2(i), · · · , πk(i). Since the chain (π(i)→ π2(i), · · · , πk(i)) has n steps
there have to be at least two elements that are equal. Suppose p > q and πp(i) = πq(i)

πp(i) = πq(i) =⇒ πp−1(i) = πq−1(i) =⇒ · · · ..πp−q(i) = i

In the above at each step we use the fact that π is a bijection and that shows the claim
that πl(i) = i. We now use this observation to carry out the following simplification

mi = a−1 ◦mπ(i) ◦ a

mπ(i) = a−1 ◦mπ2(i) ◦ a
...

mπk(i) = a−1 ◦mi ◦ a

Substituting the second equation mπ(i) into first, and then the third mπ2(i) and so on we
get

mi = a−k ◦mi ◦ ak

Therefore, for each mi, ∃ k such that ak is its equivariance.
To summarize, if a ∈ Ẽ andM =M∗, whereM is a finite set, then for each mechanism

m ∈M, ∃k ∈ {1, · · · , |M|} such that ak is its equivariance.
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