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Abstract

To design good policy, we need accurate models of how the decision makers that

operate within a given system will respond to policy changes. For example, an

economist reasoning about the design of an auction needs a model of human behavior

in order to predict how changes to the auction design will be reflected in outcomes;

or a doctor deciding on treatments needs a model of people’s health responses under

different treatments to select the best treatment policy. We would like to leverage

the accuracy of modern deep learning approaches to estimate these models, but

this setting brings two non-standard challenges. First, decision problems often

involve reasoning over sets of items, so we need deep networks that reflect this

structure. The first part of this thesis develops a deep network layer that reflects this

structural assumption, and shows that the resulting layer is maximally expressive

among parameter tying schemes. We then evaluate deep network architectures

composed of these layers on a variety of decision problems from human decision

making in a game theory setting, to algorithmic decision making on propositional

satisfiability problems. The second challenge is that predicting the effect of policy

changes involves reasoning about shifts in distribution: any policy change will, by

definition, change the conditions under which decision makers operate. This violates

the standard machine learning assumption that models will be evaluated under the

same conditions as those under which they were trained (the “independent and

identically distributed” data assumption). The second part of this thesis shows how

we can train deep networks that make valid predictions of the results of such policy

interventions, by adapting the classical causal inference method of instrumental

variables. Finally, we develop methods that are robust to some violations of the

instrumental variable assumptions in settings with multiple instrumental variables.
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Lay Summary

A key role of applied science and engineering is using past data to recommend

good future policies. For example, epidemiologists recommend lifestyle policies by

experimentally studying their health outcomes, economists recommend social policy

by inferring their effects from natural experiments, and data scientists build personal-

ized recommendations by analyzing past behavior. In all of these applications, more

accurate predictions facilitate better policy decisions. This thesis develops methods

that adapt recent advances in machine learning to make more accurate predictions

in these settings. It has two parts. First we develop deep network architectures for

modeling decision behavior that involves reasoning over sets of items—a common

structural property of data from a variety of decision problems from game theory to

recommender systems. Second, we leverage ideas from causal inference to develop

the learning algorithms that ensure the predictions remain valid after the policy

changes are implemented.
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Preface

The work presented in this thesis is based on work that was published or is under

review.

• Chapter 2 appeared at ICML 2018 in,

Jason Hartford, Devon R Graham, Kevin Leyton-Brown, and Siamak Ravan-

bakhsh. “Deep Models of Interactions Across Sets.” In Proceedings of the

35th International Conference on Machine Learning 2018

It was joint work with Devon Graham, Siamak Ravanbakhsh and Kevin

Leyton-Brown. Devon and I were joint first authors on the paper. Devon and

Siamak worked on the theoretical results showing that proposed layer is max-

imally expressive, all four of us jointly developed the methods for sampling,

regularization and combining the layers into deep network architectures, and

Devon and I wrote the code and performed the experiments.

• Chapter 3 appeared at NeurIPS 2016 in,

Jason Hartford, James R. Wright, Kevin Leyton-Brown. “Deep Learning for

Predicting Human Strategic Behavior.” In the Advances in Neural Information

Processing Systems 2016

It was joint work with James Wright and Kevin Leyton-Brown. I developed

the deep network architecture with James and Kevin, and I wrote the code,

conducted the experiments and wrote the first draft of the paper. This work

was conducted during my Masters, but is included in this thesis because it

provides a useful application for exchangeable models. It is a very similar ar-
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chitecture to the model developed in Chapter 2, which provides the theoretical

argument for the approach taken.

• Chapter 4 appeared at AAAI 2020 in,

Chris Cameron, Rex Chen, Jason Hartford, Kevin Leyton-Brown. “Predicting

Propositional Satisfiability via End-to-End Learning.” In the Proceedings of

the AAAI Conference on Artificial Intelligence 2020

It is joint work with Chris Cameron, Rex Chen and Kevin Leyton-Brown. I

adapted the architecture from Chapter 2 for use in the SAT domain, wrote the

first version of the code, and developed the encoding of the SAT problems

as exchangeable matrices with Chris Cameron. Chris, Rex and I all ran

experiments and we jointly wrote the paper.

• Chapter 5 appeared at ICML 2017 in,

Jason Hartford, Greg Lewis, Kevin Leyton-Brown, Matt Taddy. “Deep IV: A

Flexible Approach for Counterfactual Prediction.” In the Proceedings of the

34th International Conference on Machine Learning 2017

It was joint work with Matt Taddy, Greg Lewis and Kevin Leyton-Brown.

Matt and Greg identified non-parametric instrumental variable estimation as

likely to benefit from machine learning-based methods; I proposed the deep

learning-based solution that appears in the paper and we jointly worked on

the details of the method. I wrote all the code, conducted the experiments and

all four of us wrote the paper.

• Chapter 6 has been accepted to appear at ICML 2021 in,

Jason Hartford, Victor Veitch, Dhanya Sridhar, Kevin Leyton-Brown. “Valid

Causal Inference with (Some) Invalid Instruments.” In the Proceedings of the

38th International Conference on Machine Learning 2021

Machine Learning, 2021. It is joint work with Victor Veitch, Dhanya Sridhar

and Kevin Leyton-Brown. Under Kevin’s supervision, I proposed the method,

wrote the code, ran the experiments and wrote the first draft of the paper.

Victor and I worked jointly on the theory and all four of us helped write the

final version of the paper.
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Chapter 1

Introduction

A key role of applied science and engineering is recommending good policies to

decision makers such as users of a system or individuals seeking expert advice. For

example, epidemiologists may study the effect of body mass index (BMI) on heart

disease [Holmes et al., 2014] so that they can recommend lifestyle “policies” for

people that lead to good health outcomes; economists study the downstream effects

of incarceration on economic and social outcomes [Frandsen et al., 2019] so that

they can recommend more humane and effective sentencing policies to judges; and

data scientists aim to predict users’ preferences to parameterize the policies that

drive product recommendations and search ranking algorithms in order to ensure that

relevant items are shown. Because the quality of these policy recommendations is

bounded by the accuracy of whatever model is used to predict the effect of different

potential policies, we would like to leverage the massive advances that deep learning

has made in building more accurate predictive models. At first glance, this appears

to be a direct application of existing supervised learning ideas: assuming we have

sufficient historical data on responses to past policy changes, the task of learning

a function that maps from past observations to outcomes is well-understood. But,

modeling decision making requires enforcing appropriate invariances in order to

predict the effect of new policies and not just report the effects of policies under

past regimes.

To illustrate, consider the toy preference learning problem shown in Figure 1.1.

We are given five examples where a user was presented with a choice set of three
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Training Examples

(1) ♠♢♣

★♡♣

♡♢♣

★♢♡

♠♡★

(2)

(3)

(4)

(5)

Figure 1.1: A toy preference learning example. From the items selected in
each of the five choice sets, we can infer that ♠,? and ♥ are preferred
over ♣ and ♦ because the latter two are never selected. Further, ♠ is
selected over ?, and ? is selected over ♥, so if we assume transitivity,
any function that enforces this ordering, ♠ � ? � ♥ � ♣ ∼ ♦, would be
consistent with this user’s choices. Alternatively, a shortcut that simply
selects the third item in each set would also correctly predict the user’s
choices under this ordering, but it would fail if the choice sets were
reordered.

shapes and they circled their preferred shaped; our task is to learn a mapping between

from the choice set to the selected item1. When laid out in this configuration, there

are at least two mappings that solve this problem. The first involves understanding

the user’s underlying preference ordering: from the items selected in the example

choice sets, we can see that ♠ � ? � ♥ � ♣ ∼ ♦ (see the figure caption for details).

Alternatively, we could also notice that in each example that we were shown, the

selected item was in the last position and so a shortcut solution [Geirhos et al.,

2020] for this layout is to ignore the input entirely and just “solve” the problem by

1For the purpose of this example, we assume that the user’s preferences are only over the shapes
themselves, and not over their layout.
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always reporting the last position as our solution. As long as we are only ever tested

on examples that have this relationship between the order and preferences—perhaps

because the data was collected under an existing layout algorithm that induced this

dependence—both approaches to solving the problem are “correct” in so far as they

give the correct output, and will even generalize to new examples collected under

the same regime. But this second solution is brittle: if instead of a choice set of

three shapes we are given four, it is not obvious how to apply the shortcut—should

we select the third position or the last position?—and of course, the shortcut fails

for any layout where the target is not in the third / last position.

This example highlights two problems with the shortcut solution. First, it

relies on a spurious relationship between the choice set and target solutions. The

correlation between the target solutions and their order is a function of a particular

layout, rather than the result of the causal mapping that results from the user’s

preferences. And second, the shortcut solution is tightly coupled to the particular

size of the input. When one changes the number of candidate outputs, the shortcut

does not unambiguously map onto the new output size.

These problems are accentuated if we take a naive machine learning approach to

solving this task. The simplest encoding would flatten the three shapes into a vector

of fixed size and use a standard multilayer perceptron to predict the target item for

each example. We could then minimize a loss on the five examples2 using gradient

descent. As before, if we found weight configurations that encode either solution we

would get zero loss and hence, would solve the problem from the perspective of an

empirical risk minimizer. However, whereas before we might have been indifferent

between the two strategies to solving the problem, in this machine learning setup

the shortcut solution would be preferred because it is easier for gradient descent

2With only five examples, we would have a significant overfitting problem, but the same argument
applies to an infinite data regime.
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to learn,3 and a deep network of this form would not even be able to take the four

shape problem as input because it only operates on fixed sized inputs.

Of course, this is just a toy problem,4 but these problems with the shortcut

solution illustrate two desiderata for learned models.

1. We want our hypothesis class to reflect the known invariances inherent in

the data: the intended mapping in our toy problem was a set-valued function,

so any permutation in the input should leave the output unchanged up to a

corresponding permutation. At a minimum, any candidate solution should

reflect this known structure.

2. We want models that remain valid under interventions that break the depen-

dence between the content of the input and the policy under which the data

was collected. In the toy example, the content of the input is the particular

shapes that were used in each choice set, while the layout algorithm deter-

mines the policy under which the data was collected; we want a model that

makes valid predictions even if the layout is chosen independently of the

content such that the target no longer always appears in a predictable position.

It turns out that in this particular problem, addressing the first desideratum

fixes both failures (because set-valued functions cannot depend on ordering by

construction), but in general either problem may occur. As such, this thesis addresses

the two desiderata in two parts. In Part 1, we develop a deep network architecture

that is equivariant5 with respect to a set of permutations of the input. This allows

us to model problems that involve reasoning over sets of inputs, which we evaluate

across a variety of applications from human decision making in recommender

3The shortcut solution can be represented in a multilayer perceptron by setting all the weights to
zero except the bias term in the output layer. When parameters are initialized near zero, this solution
essentially involves optimizing only one parameter, and is “simple” in that most of the weights are
zero. We know from recent work [Belkin et al., 2019] on the implicit bias of stochastic gradient
descent in overparameterized models, if the minimizer of a loss function is not unique, gradient
descent will choose the “simplest” solution (under the appropriate norm). More complex examples of
the phenomenon of “shortcut learning” are surveyed in Geirhos et al. [2020].

4Though examples of layout-induced confounding do occur in real data; for example, see the
sponsored search experiment in Section 5.5.2.

5A function, f is invariant with respect to a set of transformationsG, if for all g ∈G, f (x) = f (g(x));
that is, its output is unchanged for all transformations in G. A function is equivariant, if the function’s
output is constant up to a corresponding transformation of the output, so gy( f (x)) = f (gx(x)).
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systems and game theoretic settings, to algorithmic decision making in Boolean

satisfiability problems. Part 2 addresses the second desideratum by developing

methods for performing causal inference using deep networks. The dependence

between layout and content is an example of confounding that was induced by

the layout algorithm. By design, causal inference approaches are robust to these

confounding effects by aiming to estimate the effect of “interventions” on the input

that break these dependencies.

1.1 Deep networks for permutation equivariant data
If there are known invariances in the data, we would like to enforce them through

the choice of deep network architecture such that they are reflected regardless of the

training procedure. By far the most successful example of this is the convolution

architecture [LeCun et al., 1989] which enforces equivariance with respect to

translations in images. This idea has been extended and generalized across a large

range of transformations from 2D and 3D rotations [Cohen et al., 2018], or to more

general classes of transformations defined by actions of discrete and compact groups

[Shawe-Taylor, 1989; Wood and Shawe-Taylor, 1996; Cohen and Welling, 2016;

Ravanbakhsh et al., 2017; Kondor and Trivedi, 2018; Cohen et al., 2019]. The

unifying idea behind all of these contributions is that, if the symmetries in the data

can be expressed in terms of the actions of a group, there exists an appropriately

defined convolution operation that enforces this invariance. Given some known

symmetry, the challenge is to characterize the associated convolution operation.

Chapter 2 discusses my work in developing a deep network architecture for

matrices of data that are equivariant with respect to permutations of their rows or

columns. Data of this form is particularly important to decision making because it

is prevalent in settings where decision makers reason over the relationships between

discrete sets. For example, in game theory, decision makers have to decide which

of a set of actions to play, while accounting for the fact that their payoffs are a

function of both their actions and the associated set of their opponent’s actions.

The standard representation for these problems is the so-called normal form: a

bi-matrix of payoffs that is equivariant with respect to permutations of rows and

columns because they correspond to relabelings of the actions that leave the game
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strategically equivalent. Chapter 3 will show an application of this architecture for

the behavioral game theory problem of predicting the distribution of actions people

will take in a given a two player normal-form game.

The same permutation invariant structure is present in the standard representa-

tion of logical formulae that is used by propositional satisfiability solvers. Every

logical formula has an equivalent equivalent representation as a conjunction—a

logical AND—over clauses, each of which consists only of a disjunction—a logical

OR—over a set of variables [see Russell and Norvig, 2010, Chapter 7]. There is a

natural representation of these formulae as a matrix indexed by clauses and vari-

ables, and because both the conjunction and disjunction operations are commutative,

this matrix is permutation invariant. Chapter 4 discusses my work that uses the

architecture from Chapter 2 for predicting the satisfiability of logical formulae.

1.2 Causal inference
For any learning problem whose goal is to guide decision making, we will typically

have to consider the relationship between three sets of variables: a ‘treatment’ or

decision variable, t, that records what action was taken in each observation, a context

variable; x, that records the observed covariates or state variables that guided the

choice of action; and a response variable y that is a function of both the treatment and

the context. This set up is true of both reinforcement learning and causal inference,

but while in reinforcement learning you have both the ability to experiment, and

knowledge of the policy that was used for each observation, in causal inference you

have neither. The goal is still to predict the effect to taking actions by setting the

treatment variable, which is complicated by the fact that, because both the treatment

and response variables share common causes, there may be marginal dependence

between the two variables even if the treatment has no effect on the response. For

example, if a medical treatment is expensive, rich people may be more likely to

decide to take it because they can afford it. But, they will also have better health

outcomes independently of the effect of the treatment because they have access to

better nutrition, exercise regimes, and so forth. These differences will bias naive

estimation procedures that ignore this wealth effect.
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There are a large class of methods that address this problem [for textbook

treatments see Angrist and Pischke, 2008; Pearl, 2009; Imbens and Rubin, 2015;

Hernán and Robins, 2020], all of which require that we make assumptions about the

relationship between any observed and latent variables that affect both the treatment

and response. The popular approaches to solving causal inference problems can be

broadly categorized by whether or not you assume that x includes all common causes

that may confound the relationship between t and y. In the “unconfounded” setting

where x includes all confounders, if it is the case that for each x, every treatment

value has some probability of being selected (the “overlap” assumption), we can

estimate the causal effect of taking actions. Overlap ensures that, given a large

enough dataset, we will eventually try every treatment—we cannot expect to say

something about the relationship between treatments and responses for treatments

we never try—and unconfoundedness ensures that any conditional relationship

(given x) that we observe is not driven by some unobserved factor.

In this thesis we focus on the second class of methods, that do not assume

unconfoundedness but instead rely on the existence of an “instrumental variable” to

identify the causal effect [Wright, 1928; Reiersøl, 1945; Angrist and Pischke, 2008].

An instrumental variable, z, is a variable that is assumed to affect the response

only through its effect on the treatment (z→ t→ y). Under this assumption, the

difference between the instrument’s respective effect on the treatment, (z→ t),

and the response, (z→ y), can be attributed to the causal relationship between the

treatment and response (t→ y), and as a result, we can identify its effect. Chapter 5

discusses my work that uses instrumental variables with deep networks to estimate

to the effect of interventions in the presence of unobserved confounding factors.

The instrumental variable assumptions are powerful but restrictive so in Chapter

6 develops an approach that lets us apply instrumental variable estimation more

broadly by showing how we can leverage multiple candidate instruments to perform

valid inference even if only a subset of the candidates are valid.
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Part I

Permutation Equivariance:
Models and Applications
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Chapter 2

Deep Networks for Exchangeable
Arrays

In this chapter we develop a deep network layer that is equivariant under permu-

tations of rows and columns of input matrices (with extensions to higher order

tensors) and we show that the layer is maximally expressive among all possible

parameter tying schemes for achieving equivariance. Empirically, we show that this

architecture gives strong generalization performance both within distribution and in

tasks that require transfer to new distributions without retraining.

This chapter presents the layer in the context of matrix completion for recom-

mender systems—arguably the canonical machine learning task for exchangeable

arrays—and Chapter 3 and Chapter 4 will discuss its applications to behavioral

game theory and propositional satisfiability respectively.

2.1 Introduction
A canonical problem where we need to learn a model of a decision maker’s behavior

is the problem of matrix completion for recommender systems. We are given a

sparse matrix of data of the form shown in Figure 2.1 (left), and our task is to fill in

the blanks: we have to predict what rating each user would have given to each movie

so that we can recommend unrated movies that we expect the users would like.
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permutation

Figure 2.1: Example ratings matrix indexed by users on the rows and movies
on the columns. Our task is to fill in the blanks indicated with a ‘?’ on
the left. Notice that the matrix on the left and the matrix on the right are
equivalent up to a permutation of the rows and columns.

This data has a structural property that we can leverage: any row- or column-wise

permutation of this sparse matrix only changes how the matrix is represented on

the page (Figure 2.1 (right)), but leaves the underlying meaning of the data—the

relationship between each user’s ratings and the corresponding movies—unchanged.

Matrices with this property are known as exchangeable matrices, and as we will

see in later chapters, they can represent the input to a variety of decision problems

where decision makers have to reason over sets of items.

Exchangeability has a long history in machine learning and statistics. de Finetti’s

theorem [De Finetti, 1930] states that exchangeable sequences are the product of

a latent variable model. Extensions of this theorem characterize distributions over

other exchangeable structures, from matrices to graphs; see Orbanz and Roy [2015]

for a detailed treatment. In machine learning, a variety of frameworks formalize

exchangeability in data, from plate notation to statistical relational models [Getoor

and Taskar, 2007; Raedt et al., 2016]. For example, in a simple mixture model, the

mixture components are exchangeable. Topic models [Blei, 2012] assume several

types of interrelated exchangeabilities; e.g., in Latent Dirichlet Allocation, all the

words, topics and documents are exchangeable. When dealing with exchangeable

arrays (or tensors), a common approach is tensor factorization. In particular, one

thread of work leverages tensor decomposition for inference in latent variable mod-
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Figure 2.2: Structure of our parameter matrix for the 1D (left), 2D (centre),
and 3D (right) input arrays. The parameter-sharing patterns for the
weight matrix of the higher dimensional arrays can be produced via the
Kronecker product of the weight matrix for the 1D array (i.e., vector).

els [Anandkumar et al., 2014]. However, in addition to having limited expressive

power, tensor factorization requires retraining models for each new input.

Our goal in this chapter is to design learning algorithms that respect this property

by being permutation equivariant. A function is permutation equivariant if its output

is invariant to row- or column-permutations of the input, up to a corresponding

permutation of the output. How might we achieve this? One approach for a

given N ×M matrix would be to augment the input with all M!×N! permutations

of rows and columns. However, this is computationally wasteful and becomes

infeasible for all but the smallest N and M. Instead, we show that there exists a

simple parameter-sharing scheme that constrains the weights of a standard feed-

forward layer such that a deep model composed of these layers can represent

only permutation equivariant functions. The result is analogous to the idea of a

convolution layer: a lower-dimensional effective parameter space that enforces a

desired equivariance property. Indeed, parameter-sharing is a generic and efficient

approach for achieving equivariance in deep models [Ravanbakhsh et al., 2017].

Additionally, we prove that our parameter-sharing scheme is maximally expressive

among all possible parameter-sharing schemes.

When the exchangeable matrix models the interaction between the members of

the same group, one could further constrain permutations to be identical across both

rows and columns. An example of such a jointly exchangeable matrix [Orbanz and

Roy, 2015], modeling the interaction of the nodes in a graph, is the adjacency matrix
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deployed by graph convolutions. Our approach reduces to a graph convolution

over edges in the special case of 2D arrays with this additional parameter-sharing

constraint, but also applies to arbitrary matrices and higher dimensional arrays.

Our model for exchangeable matrices can also be seen as a generalization of the

deep sets architecture [Zaheer et al., 2017], by regarding a set as a one-dimensional

exchangeable array.

In Section 2.2, we begin by introducing our exchangeable matrix layer which

uses a parameter-sharing approach to enforce permutation equivariance. In Section

2.3.2, we study two architectures for matrix completion that use an exchangeable

matrix layer. In particular the factorized autoencoding model provides a powerful

alternative to commonly used matrix factorization methods; notably, it does not

require retraining to be evaluated on previously unseen data. Our results also

generalize higher-dimensional tensors, which we show in Section 2.5 and we

conclude with further analysis and discussion in Section 2.5.

2.2 Exchangeable Matrix Layer
Let X ∈RN×M be our exchangeable input matrix. We use vec(X) :RN×M→RNM to

denote its vectorized form of X and vec−1(x) :RNM →RN×M to denote the inverse

of the vectorization that reshapes a vector of length NM into an N ×M matrix1—

i.e., vec−1(vec(X)) = X. Consider a fully connected layer Y := vec−1(σ(W vec(X)))

where σ is an element-wise nonlinear function such as sigmoid, W ∈ RNM×NM,

and Y ∈RN×M is the output matrix. Exchangeability of X motivates the following

property: suppose we permute the rows and columns X using two arbitrary per-

mutation matrices G(N) ∈ {0,1}N×N and G(M) ∈ {0,1}M×M to get X′ := G(N)XG(M).

permutation equivariance requires the new output matrix Y ′ := vec−1(σ(W vec(X′)))

to experience the same permutation of rows and columns—that is, we require

Y ′ = G(N)YG(M).

1We should write vec−1(x,N,M), since the inverse operation depends on the size of the original
matrix; we suppress this dependence for notational clarity

2This definition is simplified to ease exposition; the full definition (see Section 2.5) adds the
additional constraint that the layer not be equivariant wrt any other permutation of the elements of
X. Otherwise, a trivial layer with a constant weight matrix Wn,m = c would also satisfy the stated
equivariance property.
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Definition 2.2.1 (exchangeable matrix layer, simplified2). Given X ∈ RN×M, a

fully connected layer σ(W vec(X)) with W ∈ RNM×NM is called an exchangeable

matrix layer if, for all permutation matrices G(N) ∈ {0,1}N×N and G(M) ∈ {0,1}M×M,

permutation of the rows and columns results in the same permutations of the output:

vec−1(σ(W vec(G(N)XG(M)))) = (2.1)

G(N) vec−1(σ(W vec(X)))G(M).

This requirement heavily constrains the weight matrix W: indeed, its number of

effective degrees of freedom cannot even grow with N and M. Instead, the resulting

layer is forced to have the following, simple form:

W(n,m),(n′,m′) :=



w1 n = n′,m = m′

w2 n = n′,m , m′

w3 n , n′,m = m′

w4 n , n′,m , m′.

(2.2)

For each output element Yn,m, we have the following parameters: one connecting

it to its counterpart Xn,m; one each connecting it to the inputs of the same row and

the inputs of the same column; and one shared by all the other connections. We also

include a bias parameter; see Figure 2.2 for a visual illustration of this parameter

matrix. Theorem 1 formalizes the requirement on our parameter matrix. All proofs

are deferred to Appendix A.

Theorem 1. Given a strictly monotonic function σ, a neural layer σ(W vec(X)) is

an exchangeable matrix layer iff the elements of the parameter matrix W are tied

together such that the resulting fully connected layer simplifies to

Y = σ

(
w′1X +

w′2
N

(1N1T
N X) +

w′3
M

(X1M1T
M) (2.3)

+
w′4

NM
(1N1T

N X1M1T
M) + w′51N1T

M

)
where 1N = [1, . . . ,1]T︸     ︷︷     ︸

length N

and w′1, . . . ,w
′
5 ∈R.
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This theorem shows that the parameter sharing scheme in Equation 2.2 produces

a layer that is equvariant to exactly those permutations we desire, and moreover,

it is optimal in the sense that any layer having fewer ties in its parameters (i.e.,

more parameters) would fail to be equivariant, and hence the layer is maximally

expressive among all possible parameter sharing schemes.

This parameter sharing can be implemented efficiently by summing or averaging

elements across rows and columns; more generally, permutation equivariance is

preserved by any commutative pooling operation. Moreover, stacking multiple

layers with the same equivariance properties preserves equivariance [Ravanbakhsh

et al., 2017]. This allows us to build deep permutation equivariant models.

Multiple Input–Output Channels Equation 2.3 describes the layer as though it

has single input and output matrices. However, as with convolution, we may have

K input and O output channels. We use superscripts X〈k〉 and Y〈o〉 to denote such

channels. Cross-channel interactions are fully connected—that is, we have five

unique parameters w〈k,o〉1 , . . . ,w〈k,o〉5 for each combination of input–output channels;

note that the bias parameter w5 does not depend on the input. Similar to convolution,

the number of channels provides a tuning nob for the expressive power of the model.

In this setting, the scalar output Y〈o〉n,m is given as

Y〈o〉n,m = σ

 K∑
k=1

(
w〈k,o〉1 X〈k〉n,m +

w〈k,o〉2

N
(
∑
n′

X〈k〉n′,m)+ (2.4)

w〈k,o〉3

M
(
∑
m′

X〈k〉n,m′) +
w〈k,o〉4

NM
(
∑
n′,m′

X〈k〉n′,m′) + w〈o〉5

)
Input Features for Rows and Columns In some applications, in addition to the

matrix X ∈ RN×M×K , where K is the number of input channels/features, we may

have additional features for rows R ∈RN×K′ and/or columns C ∈RM×K′′ . We can

preserve permutation equivariance by broadcasting these row/column features over

the whole matrix and treating them as additional input channels.
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Jointly Exchangeable Matrices For jointly exchangeable matrices, such as adja-

cency matrix, Equation 2.1 is constrained to have N = M and G(N) = G(M). This will

constrain the corresponding parameter-sharing so that w2 = w3 in Equation 2.2.

2.2.1 Sparse Inputs

Real-world arrays are often extremely sparse. Indeed, matrix and tensor completion

is only useful with missing entries. Fortunately, the equivariance properties of

Theorem 1 continue to hold when we only consider the nonzero (observed) entries.

For sparse matrices, we continue to use the same parameter-sharing scheme across

rows and columns, with the only difference being that we limit the model to observed

entries. We now make this precise.

Let X ∈ RN×M×K be a sparse exchangeable array with K channels, where all

the channels for each row-column pair 〈n,m〉 are either fully observed over all K

channels or completely missing. Let I identify the set of such non-zero indices. Let

Rn = {m | (n,m) ∈ I} be the non-zero entries in the nth row of X, and let Cm be the

non-zero entries of its mth column. For this sparse matrix, the terms in the layer of

Equation 2.4 are adapted as one would expect:

w〈k,o〉2

N

∑
n′

X〈k〉n′,m →
w〈k,o〉2

|Cm|

∑
n′∈Cm

X〈k〉n′,m

w〈k,o〉3

M

∑
m′

X〈k〉n,m′ →
w〈k,o〉3

|Rn|

∑
m′∈Rn

X〈k〉n,m′

w〈k,o〉4

NM

∑
n′,m′

X〈k〉n′,m′ →
w〈k,o〉4

|I|

∑
(n′,m′)∈I

X〈k〉n′,m′

2.3 Matrix Factorization and Completion
Recommender systems are very widely applied, with many modern applications

suggesting new items (e.g., movies, friends, restaurants, etc.) to users based on

previous ratings of other items. The core underlying problem is naturally posed

as a matrix completion task: each row corresponds to a user and each column
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corresponds to an item; the matrix has a value for each rating given to an item by a

given user; the goal is to fill in the missing values of this matrix.

In Subsection 2.3.1 we review two types of analysis in dealing with exchange-

able matrices. Subsection 2.3.2 introduces two architectures: a self-supervised

model—a simple composition of exchangeable matrix layers—that is trained to

produce randomly removed entries of the observed matrix during the training; and a

factorized model that uses an auto-encoding nonlinear factorization scheme. While

there are innumerable methods for (nonlinear) matrix factorization and completion,

both of these models are the first to generalize to inductive settings while achieving

competitive performance in transductive settings. Subsection 2.3.3 introduces two

subsampling techniques for large sparse matrices followed by a literature review in

Subsection 2.3.4.

2.3.1 Inductive and Transductive Analysis

In matrix completion, during training we are given a sparse input matrix Xtr with

observed entries Itr = {(n,m)}. At test time, we are given Xts with observed entries

Its = {(n′,m′)}, and we are interested in predicting (some of) the missing entries of

Xts, expressed through I′ts. In the transductive or matrix interpolation setting, Itr and

Its have overlapping rows and/or columns—that is, for every rating in the test set, we

have seen one or more training rating from the same user or movie such that at least

one of the following is true: {m | (n,m) ∈ I} ∩ {m′ | (n′,m′) ∈ I′} , ∅ or {n | (n,m) ∈

I}∩ {n′ | (n′,m′) ∈ I′} , ∅. In fact, often Xtr and Xts are identical. Conversely, in the

inductive or matrix extrapolation setting, we are interested in making predictions

about completely unseen entries: the training and test row/column indices are

completely disjoint. We will even consider cases where Xtr and Xts are completely

different datasets—e.g., movie-rating vs music-rating. The same distinction applies

in matrix factorization. Training a model to factorize a particular given matrix is

transductive, while factorizing unseen matrices after training is inductive.
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Figure 2.3: Factorized exchangeable autoencoder. The encoder maps from the
input tensor to an embedding layer of row / column factors via one or
more hidden layers. The decoder attempts to reconstruct the input using
the factors via one or more hidden layers.

2.3.2 Architectures

Self-supervised Exchangeable Model When the task is matrix completion, we can

construct a permutation equivariant deep network, fss : RN×M×K → RN×M×K , by

composing multiple exchangeable matrix layers. Given the matrix X with observed

entries I, we divide I = Iin∪ Ipr into disjoint input and prediction entries. We then

train fss(Xin) to predict the prediction entries Xpr.

Factorized Exchangeable Autoencoder (FEA) Our factorized autoencoder is com-

posed of an encoder and a decoder. The encoder fenc :RN×M×K →RKN×N ×RKM×M

maps the (sparse) input matrix X ∈ RN×M×K to a row-factor ZN ∈ R
KN×N and a

column-factor ZM ∈R
KM×M . To do so, the encoder uses a composition of exchange-

able matrix layers. The output of the final layer Y l ∈ RN×M×Kl
is pooled across

rows and columns (and optionally passed through a feed-forward layer) to produce

latent factors ZN and ZM . The decoder gdec :RKN×N ×RKM×M→RN×M×K also uses

a composition of exchangeable matrix layers, and reconstructs the input matrix X

from the factors. The optimization objective is to minimize reconstruction error

`(X,gdec( fenc(X))); similar to classical autoencoders.

This procedure is also analogous to classical matrix factorization, with an

important distinction: once trained, we can factorize unseen matrices without
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performing any optimization. Note that the same architecture trivially extends to

tensor factorization, where we use an exchangeable tensor layer (see Section 2.5).

Channel Dropout Both the factorized autoencoder and self-supervised exchange-

able model are flexible enough to make regularization important for good general-

ization performance. Dropout [Srivastava et al., 2014] can be extended to apply to

exchangeable matrix layers by noticing that each channel in an exchangeable matrix

layer is analogous to a single unit in a standard feed-forward network. We therefore

randomly drop out whole channels during training (as opposed to dropping out

individual elements). This procedure is equivalent to the SpatialDropout technique

used in convolutional networks [Tompson et al., 2015].

2.3.3 Subsampling in Large Matrices

A key practical challenge arising from our approach is that our models are designed

to take the whole data matrix X as input and will make different (and typically

worse) predictions if given only a subset of the data matrix. As datasets grow, the

model and input data become too large to fit within fixed-size GPU memory. This is

problematic both during training and at evaluation time because our models rely on

aggregating shared representations across data points to make their predictions. To

address this, we explore two subsampling procedures.

Uniform sampling The simplest approach is to sample sub-matrices of X by

uniformly sampling from its (typically sparse) elements. This procedure is compu-

tationally cheap, but has the potential to limit the performance of the model because

the relationships between the elements of X are sparsified.

Conditional sampling Rather than sparsifying interactions between all set mem-

bers, we can pick a subset of rows and columns and maintain all their interactions;

see Figure 2.4. We designed this procedure to ensure that each element (n,m) ∈ I

has the same marginal probability of being sampled as it would have had under

the uniform sampling scheme. To achieve this, we first sample a subset of rows

N′ ⊆ N = {1, . . . ,N} from the marginal P(n) := |Rn |
|I| , followed by subsampling of
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columns using the marginal distribution over the columns, within the selected rows:

P(m | N′) =
|{(m,n)∈I|n∈N′}|
{(m′,n)∈I|n∈N′}| . This gives us a set of columnsM′ ⊆M. We consider any

observation within N′×M′ as our subsample: Isample := {(n,m) ∈ I | n ∈ N′,m ∈M′}.

This sampling procedure is more expensive than uniform sampling, as we have to

calculate conditional distributions for each set of samples.

Figure 2.4: Uniform sampling (left) selects samples (red) uniformly from the
non-zero indices of the the matrix X while conditional sampling (right)
first samples a set of rows (shown in orange) from the row marginal
distribution (green) and then selects sample from the resulting column
conditional distribution.

2.3.4 Related Literature

The literature in matrix factorization and completion is vast. The classical approach

to solving the matrix completion problem is to find some low rank (or sparse)

approximation that minimizes a reconstruction loss for the observed ratings [see

e.g., Mnih and Salakhutdinov, 2008; Candès and Recht, 2009; Koren et al., 2009].

Because these procedures learn embeddings for each user and item to make predic-

tions, they are transductive, meaning they can only make predictions about users

and items observed during training. To our knowledge this is also true for all recent

deep factorization and other collaborative filtering techniques [e.g., Salakhutdinov

et al., 2007; Dziugaite and Roy, 2015; Li et al., 2015; Sedhain et al., 2015; Wang
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et al., 2015; Zheng et al., 2016; Deng et al., 2017]. An exception is a recent work by

Yang et al. [2016] that extends factorization-style approaches to the inductive setting

(where predictions can be made on unseen users and items). However their method

relies on additional side information to represent users and items. By contrast, our

approach is able to make inductive completions on rating matrices that may differ

from that which was observed during training without using any side information

(though our approach can easily incorporate side information).

Matrix completion may also be posed as predicting edge weights in bipartite

graphs [Berg et al., 2017; Monti et al., 2017]. This approach builds on recent work

applying convolutional neural networks to graph-structured data [Scarselli et al.,

2009; Bruna et al., 2014; Duvenaud et al., 2015; Defferrard et al., 2016; Kipf and

Welling, 2016; Hamilton et al., 2017a]. As we saw, parameter sharing in graph

convolution is closely related to parameter sharing in exchangeable matrices, and

indeed it is a special case where w2 = w3 in Equation 2.2. The key difference is that

our exchangeable matrix layer is exactly equivariant to all permutations of rows

and columns, while the graph convolution layer is equivariant to all permutations

within the automorphism group of the graph [Ravanbakhsh et al., 2017]. In the

original graph convolution paper and its extensions, a number of variations have

been proposed for how to aggregate information across nodes in a graph. For

example, node representations may be averaged with their neighbors [Kipf and

Welling, 2016] or concatenated with their neighbors [Hamilton et al., 2017a]. These

variations are equivalent to choices about which of the terms of Equation 2.4 to

include in our layer, though we are not aware of any prior work that includes all five

terms. This lets us reinterpret these aggregation techniques as constraining a

In another related work, Monti et al. [2017] pose the problem of matrix com-

pletion as one of deep learning on graph-structured data. Weighted, undirected

nearest neighbour graphs are constructed over the space of user and item features.

For example, the column graph representing users could come from information

in a social network, and the row graph representing items could be based on item

similarities. Two architectures are considered. The first acts on the full data matrix

X, and the second acts on a factorized version of the form X = WHT , where W and H

are N ×R and M×R matrices with R�min(N,M). This form reduces the learning

complexity from O(NM) for the full model to O(N + M) for the factorized model.
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Dataset Users Items Ratings Sparsity

MovieLens 100K 943 1682 100,000 6.30%
MovieLens 1M 6040 3706 1,000,209 4.47%
Flixster 3000 3000 26173 0.291%
Douban 3000 3000 136891 1.521%
Yahoo Music 3000 3000 5335 0.059%

Table 2.1: Number of users, items and ratings for the data sets we used in our
experiments. For MovieLens we used the standard MovieLens data sets
[Harper and Konstan, 2015], while for Flixster, Douban and Yahoo Music
we used the 3000×3000 submatrix presented by Monti et al. [2017] so
that we could compare to the results given in their work.

Both architectures consist of two components, first a (Multi-) Graph convolutional

network is applied to the rows and columns of the input data. For each element of

the input matrix, this module outputs a q-dimensional vector of spacial features.

This is fed to a standard LSTM [Hochreiter and Schmidhuber, 1997] to extract

temporal features.

2.4 Empirical Results
For reproducibility we have released Tensorflow and Pytorch implementations of our

model.3 Subsection 2.4.1 reports experimental results in the standard transductive

(matrix interpolation) setting. However, more interesting results are reported in

Subsection 2.4.2, where we test a trained deep model on a completely different

dataset. Because of the compute costs associated with these experiments, error bars

are not included; in practice we found performance was consistent across random

seeds for any particular hyperparameter configuration.

2.4.1 Transductive Setting (Matrix Interpolation)

Here, we demonstrate that exploiting the permutation equivariant structure of the

exchangeable matrices allows us to achieve results competitive with state-of-the-

3Tensorflow: https://github.com/mravanba/deep exchangeable tensors. Pytorch: https://github.
com/jhartford/AutoEncSets.
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art, while maintaining a constant number of parameters. Note that the number of

parameters in all the competing methods grow with N and/or M.

In Table 2.2 we report that the self-supervised exchangeable model is able to

achieve state of the art performance on MovieLens-100K dataset. For MovieLens-

1M dataset, we cannot fit the whole dataset into GPU memory for training and

therefore use conditional subsampling. Our results on this dataset are summa-

rized in Table 2.3. On this larger dataset both models gave comparatively weaker

performance than what we observed on the smaller ML-100k dataset and in the

extrapolation results. We suspect this is largely due to memory constraints: there is

a trade-off between the size of the model (in terms of number of layers and units

per layer) and the batch size one can train. We found that both larger batches and

deeper models tended to offer better performance, but on these larger datasets it

is not currently possible to have both. The results for the factorized exchangeable

autoencoder architecture are similar and reported in the same table.

Table 2.2: MovieLens 100K

Model ML-100K

MC [Candès and Recht, 2009] 0.973
GMC [Kalofolias et al., 2014] 0.996
GRALS [Rao et al., 2015] 0.945
sRGCNN [Monti et al., 2017] 0.929
Factorized EAE (ours) 0.920
GC-MC [Berg et al., 2017] 0.910
Self-Supervised Model (ours) 0.910

Table 2.3: MovieLens 1 million

Model ML-1M

PMF [Mnih and Salakhutdinov, 2008] 0.883
Self-Supervised Model (ours) 0.863
Factorized EAE (ours) 0.860
I-RBM [Salakhutdinov et al., 2007] 0.854
BiasMF [Koren et al., 2009] 0.845
NNMF [Dziugaite and Roy, 2015] 0.843
LLORMA-Local [Lee et al., 2013] 0.833
GC-MC [Berg et al., 2017] 0.832
I-AUTOREC [Sedhain et al., 2015] 0.831
CF-NADE [Zheng et al., 2016] 0.829

(Left) Comparison of RMSE scores for the MovieLens-100k dataset, based on the
canonical 80/20 training/test split. (Right) Comparison of RMSE scores for the
MovieLens-1M dataset on random 90/10 training/test split. Baseline numbers are
taken from [Berg et al., 2017].
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2.4.2 Inductive Setting (Matrix Extrapolation)

Because our model does not rely on any per-user or per-movie parameters, it should

be able to generalize to new users and movies that were not present during training.

We tested this by training an exchangeable factorized autoencoder on the MovieLens-

100k dataset and then evaluating it on a subsample of data from the MovieLens-1M

dataset. At test time, the model was shown a portion of the new ratings and then

made to make predictions on the remaining ratings.

Figure 2.5 summarizes the results where we vary the amount of data shown to

the model from 5% of the new ratings up to 95% and compare against k-nearest

neighbors approaches. Our model consistently outperforms the baselines in this task

and performance degrades gracefully as we reduce the amount of data observed.

Figure 2.5: Evaluation of our model’s ability to generalize. We trained on
ML-100k and evaluated on a random subsets of the ML-1M data. At
evaluation time, p% of the ML-1M data was treated as observed and
the model was required to complete the remaining (1− p)% (p varied
from 5% to 95%). The model outperforms nearest-neighbour approaches
for all values of p and degrades gracefully to the mean prediction in the
small data case.

Extrapolation to new datasets Perhaps most surprisingly, we were able to achieve

competitive results when training and testing on completely disjoint datasets. For

this experiment we stress-tested our model’s inductive ability by testing how it

generalizes to new datasets without retraining. We used a Factorized Exchangeable

Autoencoder that was trained to make predictions on the MovieLens-100k dataset
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and tasked it with making predictions on the Flixster, Douban and YahooMusic

datasets. We then evaluated its performance against models trained for each of these

individual datasets. All the datasets involve rating prediction tasks, so they share

some similar semantics with MovieLens, but they have different user bases and

(in the case of YahooMusic) deal with music not movie ratings, so we may expect

some change in the rating distributions and user-item interactions. Furthermore,

the Flixster ratings are in 0.5 point increments from 1−5 and YahooMusic allows

ratings from 1−100, while Douban and MovieLens ratings are on 1−5 scale. To

account for the different rating scales, we simply binned the inputs to our model to

a 1−5 range and, where applicable, linearly re-scaled the output before comparing

it to the true rating4. Despite all of this, Table 2.4 shows that our model achieves

very competitive results with models that were trained for the task.

For comparison, we also include the performance of a Factorized EAE trained

on the respective datasets. This improves performance of our model over previous

state of the art results on the Flixster and YahooMusic datasets and gives very similar

performance to Berg et al. [2017]’s GC-MC model on the Douban dataset.

2.4.3 Comparison of sampling procedures

We evaluated the effect of the subsampling the input matrix X on performance for

the MovieLens-100k dataset using techniques described in Section 2.3.3. The results

are summarized in Figure 2.6. The two key findings are: I) even with large batch

sizes of 20 000 examples, performance for both sampling methods is diminished

compared to the full batch case. We suspect that our models’ weaker results on

the larger ML-1M dataset may be partially attributed to the need to subsample.

II) the conditional sampling method was able to recover some of the diminished

performance. We believe it is likely that more sophisticated sampling schemes that

explicitly take into account the dependence between hidden nodes will lead to better

performance but we leave that to future work.

4Because of this binning procedure, our model received input data that is considerably coarser
grained than what was used for the comparison models.
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Figure 2.6: Performance difference between sampling methods on the ML-
100k. The two sampling methods use mini-batches of size 20 000, while
the full batch method used all 75 000 training examples. Note that the
y-axis does not begin at 0.

Model Flixster Douban YahooMusic Netflix

GRALS [Rao et al., 2015] 1.313 0.833 38.0 -
sRGCNN [Monti et al., 2017] 1.179 0.801 22.4 -
GC-MC [Berg et al., 2017] 0.941 0.734 20.5 -
Factorize EAE (ours) 0.908 0.738 20.0 -
Factorize EAE (trained on ML100k) 0.987 0.766 23.3 0.918
Netflix Challenge Baseline - - - 0.951
PMF [Mnih and Salakhutdinov, 2008] - - - 0.897
LLORMA-Local [Lee et al., 2013] - - - 0.834
I-AUTOREC [Sedhain et al., 2015] - - - 0.823
CF-NADE [Zheng et al., 2016] - - - 0.803

Table 2.4: Evaluation of our model’s ability to generalize across datasets. We
trained a factorized model on ML100k and then evaluated it on four new
datasets. Results for the smaller datasets are from [Berg et al., 2017].

2.5 Extension to Tensors
In this section we generalize the exchangeable matrix layer to higher-dimensional

arrays (tensors) and formalize its optimal qualities. Suppose X ∈RN1×...×ND is our

D-dimensional data tensor, and vec(X) its vectorized form. We index vec(X) by

tuples (n1,n2, ...,nD), corresponding to the original dimensions of X. The precise

method of vectorization is irrelevant, provided it is used consistently. Let N =
∏

i Ni

and let n = (ni,n−i) be an element of N1× ...×ND such that ni is the value of the i-th
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Figure 2.7: Pooling structure implied by the tied weights for matrices (left)
and 3D tensors (right). The pink cube highlights one element of the
output. It is calculated as a function of the corresponding element from
the input (dark blue), pooled aggregations over the rows and columns
of the input (green and yellow), and pooled aggregation over the whole
input matrix (red). In the tensor case (right), we pool over all sub-tensors
(orange and purple sub-matrices, green sub-vectors and red scalar). For
clarity, the output connections are not shown in the tensor case.

entry of n, and n−i the values of the remaining entries (where it is understood that

the ordering of the elements of n is unchanged). We seek a layer that is equivariant

only to certain, meaningful, permutations of vec(X). This motivates our definition of

an exchangeable tensor layer in a manner that is completely analogous to Definition

2.2.1 for matrices.

For any positive integer N, let S(N) denote the symmetric group of all per-

mutations of N objects. Then S(N1) × ...×S(ND) refers to the product group of all

permutations of N1 through ND objects, while S(N ) refers to the group of all per-

mutations of N =
∏

i Ni objects. So S(N1)× ...×S(ND) is a proper subgroup of S(N )

having
∏

i(Ni!) members, compared to (
∏

i Ni)! members in S(N ). We want a layer

that is equivariant to only those permutations in S(N1) × ...×S(ND), but not to any

other member of S(N ).

Definition 2.5.1 (exchangeable tensor layer). Let g(N ) ∈ S(N1)×S(N2)× ...×S(ND)

and G(N ) be the corresponding permutation matrix. Then the neural layer

vec−1(σ(W vec(X))) with X ∈RN1×...×ND and W ∈RN ×N is an exchangeable tensor

layer if permuting the elements of the input along any set of axes results in the same
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permutation of the output tensor:

G(N )σ(W vec(X)) = σ(WG(N ) vec(X)) ∀X, (2.5)

and moreover for any other permutation of the elements X (i.e., permutations that

are not along axes), there exists an input X for which this equality does not hold.

The following theorem asserts that a simple parameter tying scheme achieves

the desired permutation equivariance for tensor-structured data.

Theorem 2. The layer Y = vec−1(σ(W vec(X))), where σ is any strictly monotonic,

element-wise nonlinearity (e.g., sigmoid), is an exchangeable tensor layer iff the

parameter matrix W ∈RN ×N is defined as follows.

For each S ⊆ [D] = {1, . . . ,D}, define a distinct parameter wS ∈R, and tie the

entries of W as follows

Wn,n′ := wS s.t. ni = n′i ⇐⇒ i ∈ S. (2.6)

That is, the (n,n′)-th element of W is uniquely determined by the set of indices at

which n and n′ are equal.

In the special case that X ∈RN1×N2 is a matrix, this gives the formulation of W

described in Section 2.2. Theorem 2 says that a layer constructed in this manner is

equivariant with respect to only those permutations of N objects that correspond

to permutations of sub-tensors along the D dimensions of the input. The proof is

in the Appendix. Equivariance with respect to permutations in S(N1)×S(N2)× ...×

S(ND) follows as a simple corollary of Theorem 2.1 in [Ravanbakhsh et al., 2017].

Non-equivariance with respect to other permutations follows from the following

Propositions.

Proposition 3. Let g(N ) ∈ S(N ) be an “illegal” permutation of elements of the

tensor X – that is g(N ) < S(N1) ×S(N2) × ...×S(ND). Then there exists a dimension

i ∈ [D] such that, for some ni,n′i ,n−i,n′−i:

g(N )((ni,n−i)) = (n′i ,n−i), but

g(N )((ni,n′−i)) , (n′i ,n
′
−i).
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If we consider the sub-tensor of X obtained by fixing the value of the i-th

dimension to ni, we expect a “legal” permutation to move this whole subtensor

to some n′i (it could additionally shuffle the elements within this subtensor.) This

Proposition asserts that an “illegal” permutation g(N ) < S(N1)×S(N2)× ...×S(ND) is

guaranteed to violate this constraint for some dimension/subtensor combination.

The next proposition asserts that if we can identify such inconsistency in permutation

of sub-tensors then we can identify and entry in G(N )W that will differ from WG(N ),

and therefore for some input tensor X, the equivariance property is violated – i.e.,

G(N )σ(W vec(X)) , σ(WG(N ) vec(X)).

Proposition 4. Let g(N ) ∈ S(N ) with G(N ) ∈ {0,1}N ×N the corresponding permu-

tation matrix. Suppose g(N ) < S(N1)×S(N2)× ...×S(ND), and let W ∈RN ×N be as

defined above. If there exists an i ∈ [D], and some ni,n′i ,n−i,n′−i such that

g(N )((ni,n−i)) = (n′i ,n−i), and

g(N )((ni,n′−i)) , (n′i ,n
′
−i),

then

(
G(N )W

)
(n′i ,n

′
−i),(ni,n−i) ,

(
WG(N ))

(n′i ,n
′
−i),(ni,n−i)

Proposition 4 makes explicit a particular element at which the products G(N)W

and WG(N) will differ, provided g(N ) is not of the desired form.

Theorem 2 shows that this parameter sharing scheme produces a layer that is

equvariant to exactly those permutations we desire, and moreover, it is optimal in

the sense that any layer having fewer ties in its parameters (i.e., more parameters)

would fail to be equivariant.

Discussion
This chapter considered the problem of predicting relationships between the ele-

ments of two or more distinct sets of objects, where the data can also be expressed

as an exchangeable matrix or tensor. We introduced a weight tying scheme enabling

the application of deep models to this type of data. We proved that our scheme

always produces permutation equivariant models and that no increase in model
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expressiveness is possible without violating this guarantee. Experimentally, we

showed that our models achieve state-of-the-art or competitive performance on

widely studied matrix completion benchmarks. Notably, our models achieved this

performance despite having a number of parameters independent of the size of the

matrix to be completed, unlike all other approaches that offer strong performance.

Also unlike these other approaches, our models can achieve competitive results for

the problem of matrix extrapolation: asking an already-trained model to complete a

new matrix involving new objects that were unobserved at training time. Finally,

we observed that our methods were surprisingly strong on various transfer learning

tasks: extrapolating from MovieLens ratings to Flixter, Douban, and YahooMusic

ratings. All of these contained different user populations and different distributions

over the objects being rated; indeed, in the Yahoo Music dataset, the underlying

objects were not even of the same kind as those rated in training data.
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Chapter 3

Deep Learning for Predicting
Human Strategic Behavior

In this chapter we develop a deep network architecture for predicting the actions of

human strategic decision makers in normal-form games. This work preceded my

work on deep networks for exchangeable arrays from Chapter 2, but the architecture

was designed to capture the same invariances and because permutation invariance

significantly constrains the number of free parameters in a network (see Section

2.2), the resulting architecture was very similar to what was presented in Chapter 2.

In particular, the network consisted of two components: “feature layers” which are

exactly the exchangeable matrix layers presented in Chapter 2, and “action response

layers” which were designed to model iterative reasoning from the behavioral game

theory literature.

3.1 Introduction
Game theory provides a powerful framework for the design and analysis of mul-

tiagent systems that involve strategic interactions [see, e.g., Shoham and Leyton-

Brown, 2008]. Prominent examples of such systems include search engines, which

use advertising auctions to generate a significant portion of their revenues and rely

on game theoretic reasoning to analyze and optimize these mechanisms [Edelman

et al., 2007; Varian, 2007]; spectrum auctions, which rely on game theoretic analysis
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to carefully design the “rules of the game” in order to coordinate the reallocation of

valuable radio spectrum [Milgrom and Segal, 2014]; and security systems, which

analyze the allocation of security personnel as a game between rational adversaries

in order to optimize their use of scarce resources [Tambe, 2011]. In such applica-

tions, system designers optimize their choices with respect to assumptions about the

preferences, beliefs and capabilities of human players [Parkes and Wellman, 2015].

A standard game theoretic approach is to assume that players are perfectly rational

expected utility maximizers and indeed, that they have common knowledge of this.

In some applications, such as the high-stakes spectrum auctions just mentioned, this

assumption is probably reasonable, as participants are typically large companies that

hire consultants to optimize their decision making. In other scenarios that allow less

time for planning or involve less sophisticated participants, the perfect rationality

assumption may lead to suboptimal system designs. For example, Yang et al. [2013]

were able to improve the performance of systems that defend against adversaries in

security games by relaxing the perfect rationality assumption. Of course, relaxing

this assumption means finding something else to replace it with: an accurate model

of boundedly rational human behavior.

The behavioral game theory literature has developed a wide range of models for

predicting human behavior in strategic settings by incorporating cognitive biases and

limitations derived from observations of play and insights from cognitive psychology

[Camerer, 2003]. Like much previous work, we study the unrepeated, simultaneous-

move setting, for two reasons. First, the setting is conceptually straightforward:

games can be represented in a so-called “normal form”, simply by listing the utilities

to each player for each combination of their actions (e.g., see Figure 3.1). Second,

the setting is surprisingly general: auctions, security systems, and many other

interactions can be modeled naturally as normal form games. The most successful

predictive models for this setting combine notions of iterative reasoning and noisy

best response [Wright and Leyton-Brown, 2010] and use hand-crafted features to

model the behavior of non-strategic players [Wright and Leyton-Brown, 2014].

The success of deep learning has demonstrated that feature engineering can

be dispensed with, by fitting flexible models that are capable of learning novel

representations, but a key feature in successful deep models is the use of careful

design choices to encode “basic domain knowledge of the input, in particular its
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topological structure. . . to learn better features” [Bengio et al., 2013, emphasis

original]. For example, feed-forward neural nets can, in principle, represent the

same functions as convolution networks, but the latter tend to be more effective in

vision applications because they encode the prior that low-level features should be

derived from the pixels within a small neighborhood and that predictions should

be invariant to small input translations. Our work seeks to do the same for the

behavioral game theory setting, identifying novel architectures that extend deep

learning to predicting behavior in strategic scenarios encoded as two player, normal-

form games.

A key property required of such a model is the ability to generalize across

game size: a model must be able to take as input an m×n bimatrix game (i.e., two

m×n matrices encoding the payoffs of players 1 and 2 respectively) and output an

m-dimensional probability distribution over player 1’s actions, for arbitrary values

of n and m, including values that did not appear in training data. In contrast, existing

deep models typically assume either a fixed-dimensional input or an arbitrary-length

sequence of fixed-dimensional inputs, in both cases with a fixed-dimensional output.

To achieve this, we leverage knowledge that permuting rows and columns in the

input (i.e., changing the order in which actions are presented to the players) does not

change the strategic properties of the game, so it should not change a model’s output

beyond a corresponding permutation. In Section 3.3, we present an architecture

that operates on matrices using scalar weights to capture invariance to changes

in the size of the input matrices and to permutations of its rows and columns. In

Section 3.4 we evaluate our model’s ability to predict distributions of play given

normal form descriptions of games on a dataset of experimental data from a variety

of experiments, and find that our feature-free deep learning model significantly

exceeds the performance of the current state-of-the-art model, which has access to

hand-tuned features based on expert knowledge [Wright and Leyton-Brown, 2014].

3.2 Related Work

Prediction in normal form games. The task of predicting actions in normal form

games has been studied mostly in the behavioral game theory literature. Such models
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Figure 3.1: An example 3×3 normal form game. The row player chooses from
actions {T,M,B} and the column player chooses from actions {R,C,L}. If
the row player played action T and column player played action C, their
resulting payoffs would be 3 and 5 respectively. Given such a matrix as
input we aim to predict a distribution over the row player’s choice of
actions defined by the observed frequency of actions shown on the right.

tend to have few parameters and to aim to describe previously identified cognitive

processes. Two key ideas are the relaxation of best response to “quantal response”

and the notion of “limited iterative strategic reasoning”. Models that assume

quantal response assume that players select actions with probability increasing in

expected utility instead of always selecting the action with the largest expected

utility [McKelvey and Palfrey, 1995]. This is expressed formally by assuming that

players select actions, ai, with probability, si, given by the logistic quantal response

function si(ai) =
exp(λui(ai,s−i))∑
a′i

exp(λui(a′i ,s−i))
. This function is equivalent to the familiar softmax

function with an additional scalar sharpness parameter λ that allows the function

to output the best response as λ→∞ and the uniform distribution as λ→ 0. This

relaxation is motivated by the behavioral notion that if two actions have similar

expected utility then they will also have similar probability of being chosen.

Iterative strategic reasoning means that players perform a bounded number of

steps of reasoning in deciding on their actions, rather than always converging to

fixed points as in classical game theory. Models incorporating this idea typically

assume that every agent has an integer level. Non-strategic, “level-0” players choose

actions uniformly at random; level-k players best respond to the level-(k−1) players

[Costa-Gomes et al., 2001] or to a mixture of levels between level-0 and level-

33



(k−1) [Camerer et al., 2004]. The two ideas can be combined, allowing players

to quantally respond to lower level players [Stahl and Wilson, 1994; Wright and

Leyton-Brown, 2012]. Because iterative reasoning models are defined recursively

starting from a base-case of level-0 behavior, their performance can be improved

by better modeling the non-strategic level-0 players. Wright and Leyton-Brown

[2014] combine quantal response and bounded steps of reasoning with a model of

non-strategic behavior based on hand-crafted game theoretic features. To the best of

our knowledge, this is the current state-of-the-art model.

Deep learning. Deep learning has demonstrated much recent success in solving

supervised learning problems in vision, speech and natural language processing [see,

e.g., LeCun et al., 2015; Schmidhuber, 2015]. By contrast, there have been relatively

few applications of deep learning to multiagent settings. Notable exceptions are

Clark and Storkey [2015] and the policy network used in Silver et al. [2016]’s work

in predicting the actions of human players in Go. Their approach is similar in spirit

to ours: they map from a description of the Go board at every move to the choices

made by human players, while we perform the same mapping from a normal form

game. The setting differs in that Go is a single, sequential, zero-sum game with a

far larger, but fixed, action space, which requires an architecture tailored for pattern

recognition on the Go board. In contrast, we focus on constructing an architecture

that generalizes across general-sum, normal form games.

3.3 Modeling Human Strategic Behavior with Deep
Networks

A natural starting point in applying deep networks to a new domain is testing the

performance of a regular feed-forward neural network. To apply such a model to

a normal form game, we need to flatten the utility values into a single vector of

length mn + nm and learn a function that maps to the m-simplex output via multiple

hidden layers. Feed-forward networks cannot handle size-invariant inputs, but we

can temporarily set that problem aside by restricting ourselves to games with a

fixed input size. We experimented with that approach and found that feed-forward

networks often generalized poorly as the network overfitted the training data (see
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Section B.2 of the supplementary material for experimental evidence). One way of

combating overfitting is to encourage invariance through data augmentation: for

example, one may augment a dataset of images by rotating, shifting and scaling

the images slightly. In games, a natural simplifying assumption is that players

are indifferent to the order in which actions are presented, implying invariance to

permutations of the payoff matrix.1 Incorporating this assumption by randomly

permuting rows or columns of the payoff matrix at every epoch of training dramati-

cally improved the generalization performance of a feed-forward network in our

experiments, but the network is still limited to games of the size that it was trained

on.

Our approach is to enforce this invariance in the model architecture rather than

through data augmentation. We then add further flexibility by incorporating iterative

response ideas inspired by behavioral game theory models. The result is a model that

is flexible enough to represent all the models surveyed in Wright and Leyton-Brown

[2012] and Wright and Leyton-Brown [2014]—and a huge space of novel models

as well—and which can be identified automatically. The model is also invariant

to the size of the input payoff matrix, differentiable end to end and trainable using

standard gradient-based optimization.

The model has two parts: feature layers and action response layers; see Figure

4.2 for a graphical overview. The feature layers take the row and column player’s

normalized utility matrices U(r) and U(c) ∈ Rm×n as input, where the row player

has m actions and the column player has n actions. The feature layers consist of

multiple levels of hidden matrix units, H(r)
i, j ∈ R

m×n, each of which calculates a

weighted sum of the units below and applies a non-linear activation function. Each

layer of hidden units is followed by pooling units, which output aggregated versions

of the hidden matrices to be used by the following layer. After multiple layers,

the matrices are aggregated to vectors and normalized to points on the m−simplex,

∆m := {x ∈ Rm :
∑

i xi = 1, xi ≥ 0}, to define a distribution over actions, f(r)
i ∈ ∆m

in softmax units. We refer to these distributions as features because they encode

higher-level representations of the input matrices that may be combined to construct

the output distribution.

1We thus ignore salience effects that could arise from action ordering.
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Iterative strategic reasoning is an important phenomenon in human decision

making; we thus want to allow our models the option of incorporating such reason-

ing. To do so, we compute features for the column player in the same manner by

applying the feature layers to the transpose of the input matrices, which outputs

f(c)
i ∈ ∆n. Each action response layer for a given player then takes the opposite

player’s preceding action response layers as input and uses them to construct distri-

butions over the respective players’ outputs. The final output y ∈ ∆m is a weighted

sum of all action response layers’ outputs.

3.3.1 Equivariant Hidden Units

We build a model that ties parameters in our network by encoding the assumption

that players reason about each action identically. This assumption implies that

the row player applies the same function to each row of a given game’s utility

matrices. Thus, in a normal form game represented by the utility matrices U(r)

and U(c), the weights associated with each row of U(r) and U(c) must be the same.

Similarly, the corresponding assumption about the column player implies that the

weights associated with each column of U(r) and U(c) must also be the same. We

can satisfy both assumptions by applying a single scalar weight to each of the utility

matrices, computing wrU(r) + wcU(c). This idea can be generalized as in a standard

feed-forward network to allow us to fit more complex functions. A hidden matrix

unit taking all the preceding hidden matrix units as input can be calculated as

Hl,i = φ

∑
j

wl,i, j Hl−1, j + bl,i

 Hl,i ∈R
m×n,

where Hl,i is the ith hidden unit matrix for layer l, wl,i, j is the jth scalar weight, bl,i

is a scalar bias variable, and φ is a non-linear activation function applied element-

wise. Notice that, as in a traditional feed-forward neural network, the output of

each hidden unit is simply a nonlinear transformation of the weighted sum of the

preceding layer’s hidden units. Our architecture differs by maintaining a matrix at

each hidden unit instead of a scalar. So while in a traditional feed-forward network

each hidden unit maps the previous layer’s vector of outputs into a scalar output, in
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our architecture each hidden unit maps a tensor of outputs from the previous layer

into a matrix output.

Tying weights in this way reduces the number of parameters in our network by a

factor of nm, offering two benefits. First, it reduces the degree to which the network

is able to overfit; second and more importantly, it makes the model invariant to the

size of the input matrices. To see this, notice that each hidden unit maps from a

tensor containing the k output matrices of the preceding layer in Rk×m×n to a matrix

in Rm×n using k weights. Thus our number of parameters in each layer depends on

the number of hidden units in the preceding layer, but not on the sizes of the input

and output matrices. This allows the model to generalize to input sizes that do not

appear in training data.

3.3.2 Pooling units

A limitation of the weight tying used in our hidden matrix units is that it forces

independence between the elements of their matrices, preventing the network from

learning functions that compare the values of related elements (see Figure 3.2 (left)).

Recall that each element of the matrices in our model corresponds to an outcome in

a normal form game. We would like our model to be able to compare is the set of

payoffs associated with each of the players’ actions that led to that outcome. This

corresponds to the row and column of each matrix associated with the particular

element.

This observation motivates our pooling units, which allow information sharing

by outputting aggregated versions of their input matrix that may be used by later

layers in the network to learn to compare the values of a particular cell in a matrix

and its row- or column-wise aggregates.

H→ {Hc,Hr} =




maxi hi,1 maxi hi,2 . . .

maxi hi,1 maxi hi,2 . . .
...

...

maxi hi,1 maxi hi,2


,


max j h1, j max j h1, j . . .

max j h2, j max j h2, j . . .
...

...

max j hm, j max j hm, j . . .




(3.1)

A pooling unit takes a matrix as input and outputs two matrices constructed from

row- and column-preserving pooling operations respectively. A pooling operation
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Figure 3: Left: Without pooling units, each element of every hidden matrix unit depends only on the
corresponding elements in the units from the layer below; e.g., the middle element highlighted in
red depends only on the value of the elements of the matrices highlighted in orange. Right: With
pooling units at each layer in the network, each element of every hidden matrix unit depends both on
the corresponding elements in the units below and the pooled quantity from each row and column.
E.g., the light blue and purple blocks represent the row and column-wise aggregates corresponding to
their adjacent matrices. The dark blue and purple blocks show which of these values the red element
depends on. Thus, the red element depends on both the dark- and light-shaded orange cells.
JH: TODO: add level labels

Action Response Layers The feature layers described above are sufficient to meet our objective203

of mapping from the input payoff matrices to a distribution over the row player’s actions. However,204

this architecture is not capable of explicitly representing iterative strategic reasoning, which the205

behavioral game theory literature has identified as an important modeling ingredient. We incorporate206

this ingredient using action response layers: the first player can respond to the second’s beliefs,207

the second can respond to this response by the first player, and so on to some finite depth. The208

proportion of players in the population who iterate at each depth is a parameter of the model; thus,209

our architecture is also able to learn not to perform iterative reasoning.210

More formally, we begin by denoting the output of the feature layers as ar
(r)
0 =

Pk
i=1 w

(r)
0i f

(r)
i ,211

where we now include an index (r) to refer to the output of row player’s action response layer212

ar
(r)
0 2 �m. Similarly, by applying the feature layers to a transposed version of the input matrices,213

the model also outputs a corresponding ar
(c)
0 2 �n for the column player which expresses the row214

player’s beliefs about which actions the column player will choose. Each action response layer215

composes its output by calculating the expected value of an internal representation of utility with216

respect to its belief distribution over the opposition actions. For this internal representation of utility217

we chose simply a weighted sum of the final layer of the hidden layers,
P

i wiHL,i, because each218

HL,i is already some non-linear transformation of the original payoff matrix, and so this allows the219

model to express utility as a transformation of the original payoffs. Given the matrix that results from220

this sum, we can compute expected utility with respect to the vector of beliefs about the opposition’s221

choice of actions, ar(c)
j , by simply taking the dot product of the weighted sum and beliefs. When222

we iterate this process of responding to beliefs about one’s opposition more than once, higher level223

players will respond to beliefs, ari, for all i less their level and then output a weighted combination224

of these responses using some weights, vl,i. Putting this together, the lth action response layer for the225

row player (r) is defined as226

ar
(r)
l = softmax

 
�l

 
l�1X

j=0

v
(r)
l,j

 
kX

i=1

w
(r)
l,i H

(r)
L,i

!
· ar(c)

j

!!
, ar

(r)
l 2 �m, l 2 {1, ..., K},

where l indexes the action response layer, �l is a scalar sharpness parameter that allows us to sharpen227

the resulting distribution, w
(r)
l,i and v

(r)
l,j are scalar weights, HL,i are the row player’s k hidden units228

from the final hidden layer L, ar(c)
j is the output of the column player’s jth action response layer and229

K is the total number of action response layers. We constrain w
(r)
li and v

(r)
lj to the simplex and use230

�l to sharpen the output distribution so that we can optimize the sharpness of the distribution and231

relative weighting of its terms independently. We build up the column player’s action response layer,232

ar
(c)
l , similarly, using the column player’s internal utility representation, H(c)

L,i, responding to the row233

player’s action response layers, ar(r)
l . These layers are not used in the final output directly but are234

relied upon by subsequent action response layers of the row player.235

6

Figure 3: Left: Without pooling units, each element of every hidden matrix unit depends only on the
corresponding elements in the units from the layer below; e.g., the middle element highlighted in
red depends only on the value of the elements of the matrices highlighted in orange. Right: With
pooling units at each layer in the network, each element of every hidden matrix unit depends both on
the corresponding elements in the units below and the pooled quantity from each row and column.
E.g., the light blue and purple blocks represent the row and column-wise aggregates corresponding to
their adjacent matrices. The dark blue and purple blocks show which of these values the red element
depends on. Thus, the red element depends on both the dark- and light-shaded orange cells.
JH: TODO: add level labels

Action Response Layers The feature layers described above are sufficient to meet our objective203

of mapping from the input payoff matrices to a distribution over the row player’s actions. However,204

this architecture is not capable of explicitly representing iterative strategic reasoning, which the205

behavioral game theory literature has identified as an important modeling ingredient. We incorporate206

this ingredient using action response layers: the first player can respond to the second’s beliefs,207

the second can respond to this response by the first player, and so on to some finite depth. The208

proportion of players in the population who iterate at each depth is a parameter of the model; thus,209

our architecture is also able to learn not to perform iterative reasoning.210

More formally, we begin by denoting the output of the feature layers as ar
(r)
0 =

Pk
i=1 w

(r)
0i f

(r)
i ,211

where we now include an index (r) to refer to the output of row player’s action response layer212

ar
(r)
0 2 �m. Similarly, by applying the feature layers to a transposed version of the input matrices,213

the model also outputs a corresponding ar
(c)
0 2 �n for the column player which expresses the row214

player’s beliefs about which actions the column player will choose. Each action response layer215

composes its output by calculating the expected value of an internal representation of utility with216

respect to its belief distribution over the opposition actions. For this internal representation of utility217

we chose simply a weighted sum of the final layer of the hidden layers,
P

i wiHL,i, because each218

HL,i is already some non-linear transformation of the original payoff matrix, and so this allows the219

model to express utility as a transformation of the original payoffs. Given the matrix that results from220

this sum, we can compute expected utility with respect to the vector of beliefs about the opposition’s221

choice of actions, ar(c)
j , by simply taking the dot product of the weighted sum and beliefs. When222

we iterate this process of responding to beliefs about one’s opposition more than once, higher level223

players will respond to beliefs, ari, for all i less their level and then output a weighted combination224

of these responses using some weights, vl,i. Putting this together, the lth action response layer for the225

row player (r) is defined as226

ar
(r)
l = softmax

 
�l

 
l�1X

j=0

v
(r)
l,j

 
kX

i=1

w
(r)
l,i H

(r)
L,i

!
· ar(c)

j

!!
, ar

(r)
l 2 �m, l 2 {1, ..., K},

where l indexes the action response layer, �l is a scalar sharpness parameter that allows us to sharpen227

the resulting distribution, w
(r)
l,i and v

(r)
l,j are scalar weights, HL,i are the row player’s k hidden units228

from the final hidden layer L, ar(c)
j is the output of the column player’s jth action response layer and229

K is the total number of action response layers. We constrain w
(r)
li and v

(r)
lj to the simplex and use230

�l to sharpen the output distribution so that we can optimize the sharpness of the distribution and231

relative weighting of its terms independently. We build up the column player’s action response layer,232

ar
(c)
l , similarly, using the column player’s internal utility representation, H(c)

L,i, responding to the row233

player’s action response layers, ar(r)
l . These layers are not used in the final output directly but are234

relied upon by subsequent action response layers of the row player.235

6

Input Units
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Hidden Layer 2

Figure 3.2: Left: Without pooling units, each element of every hidden matrix
unit depends only on the corresponding elements in the units from the
layer below; e.g., the middle element highlighted in red depends only on
the value of the elements of the matrices highlighted in orange. Right:
With pooling units at each layer in the network, each element of every
hidden matrix unit depends both on the corresponding elements in the
units below and the pooled quantity from each row and column. E.g.,
the light blue and purple blocks represent the row and column-wise
aggregates corresponding to their adjacent matrices. The dark blue and
purple blocks show which of these values the red element depends on.
Thus, the red element depends on both the dark- and light-shaded orange
cells.

could be any permutation invariant function that maps from Rn→R. We use the

max function because it is necessary to represent known behavioral functions (see

Section 4 of the supplementary material for details) and offered the best empirical

performance of the functions we tested. Equation (3.1) shows an example of a

pooling layer with max functions for some arbitrary matrix H. The first of the

two outputs, Hc, is column-preserving in that it selects the maximum value in

each column of H and then stacks the resulting vector n-dimensional vector m

times such that the dimensionality of H and Hc are the same. Similarly, the row-

preserving output constructs a vector of the max elements in each column and

stacks the resulting m-dimensional vector n times such that Hr and H have the same

dimensionality. We stack the vectors that result from the pooling operation in this

fashion so that the hidden units from the next layer in the network may take H,Hc

and Hr as input. This allows these later hidden units to learn functions where each

element of their output is a function both of the corresponding element from the

matrices below as well as their row and column-preserving maximums (see Figure

3.2 (right)).

38



3.3.3 Output distribution

Our model predicts a distribution over the row player’s actions. In order to do this,

we need to map from the hidden matrices in the final layer, HL,i ∈ Rm×n, of the

network onto a point on the m-simplex, ∆m. We achieve this mapping by applying

a row-preserving sum to each of the final layer hidden matrices HL,i (i.e. we sum

uniformly over the columns of the matrix as described above) and then applying

a softmax function to convert each of the resulting vectors hi into normalized

distributions. This produces k features fi, each of which is a distribution over the

row player’s m actions:

fi = softmax
(
h(i)

)
where h(i)

j =

n∑
k=1

h(i)
j,k for all j ∈ {1, ...,m}, h(i)

j,k ∈H(i) i ∈ {1, ...,k}.

We can then produce the output of our features, ar0, using a weighted sum of the

individual features, ar0 =
∑k

i=1 wifi, where we optimize wi under simplex constraints,

wi ≥ 0,
∑

i wi = 1. Because each fi is a distribution and our weights wi are points on

the simplex, the output of the feature layers is a mixture of distributions.

3.3.4 Action Response Layers

The feature layers described above are sufficient to meet our objective of mapping

from the input payoff matrices to a distribution over the row player’s actions.

However, this architecture is not capable of explicitly representing iterative strategic

reasoning, which the behavioral game theory literature has identified as an important

modeling ingredient. We incorporate this ingredient using action response layers:

the first player can respond to the second’s beliefs, the second can respond to this

response by the first player, and so on to some finite depth. The proportion of

players in the population who iterate at each depth is a parameter of the model; thus,

our architecture is also able to learn not to perform iterative reasoning.

More formally, we begin by denoting the output of the feature layers as ar(r)
0 =∑k

i=1 w(r)
0i f(r)

i , where we now include an index (r) to refer to the output of row

player’s action response layer ar(r)
0 ∈ ∆m. Similarly, by applying the feature layers to

a transposed version of the input matrices, the model also outputs a corresponding

ar(c)
0 ∈ ∆n for the column player which expresses the row player’s beliefs about
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which actions the column player will choose. Each action response layer composes

its output by calculating the expected value of an internal representation of utility

with respect to its belief distribution over the opposition actions. For this internal

representation of utility, we chose a weighted sum of the final layer of the hidden

layers,
∑

i wiHL,i, because each HL,i is already some non-linear transformation

of the original payoff matrix, and so this allows the model to express utility as

a transformation of the original payoffs. Given the matrix that results from this

sum, we can compute expected utility with respect to the vector of beliefs about

the opposition’s choice of actions, ar(c)
j , by simply taking the dot product of the

weighted sum and beliefs. When we iterate this process of responding to beliefs

about one’s opposition more than once, higher-level players will respond to beliefs,

ari, for all i less than their level and then output a weighted combination of these

responses using some weights, vl,i. Putting this together, the lth action response

layer for the row player (r) is defined as

ar(r)
l = softmax

(
λl

( l−1∑
j=0

v(r)
l, j

 k∑
i=1

w(r)
l,i H(r)

L,i

 ·ar(c)
j

))
, ar(r)

l ∈ ∆m, l ∈ {1, ...,K},

where l indexes the action response layer, λl is a scalar sharpness parameter that

allows us to sharpen the resulting distribution, w(r)
l,i and v(r)

l, j are scalar weights,

HL,i are the row player’s k hidden units from the final hidden layer L, ar(c)
j is the

output of the column player’s jth action response layer, and K is the total number

of action response layers. We constrain w(r)
li and v(r)

l j to the simplex and use λl

to sharpen the output distribution so that we can optimize the sharpness of the

distribution and relative weighting of its terms independently. We build up the

column player’s action response layer, ar(c)
l , similarly, using the column player’s

internal utility representation, H(c)
L,i, responding to the row player’s action response

layers, ar(r)
l . These layers are not used in the final output directly but are relied upon

by subsequent action response layers of the row player.

Output Our model’s final output is a weighted sum of the outputs of the action

response layers. This output needs to be a valid distribution over actions. Because

each of the action response layers also outputs a distribution over actions, we can
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achieve this requirement by constraining these weights to the simplex, thereby

ensuring that the output is just a mixture of distributions. The model’s output is thus

y =
∑K

j=1 w jar(r)
j , where y and ar(r)

j ∈ ∆m, and w j ∈ ∆K .

3.3.5 Representational generality of our architecture

Our work aims to extend existing models in behavioral game theory via deep

learning, not to propose an orthogonal approach. Thus, we must demonstrate that

our representation is rich enough to capture models and features that have proven

important in that literature. We omit the details here for space reasons (see the

supplementary material, Section B.1), but summarize our findings. Overall, our

architecture can express the quantal cognitive hierarchy [Wright and Leyton-Brown,

2014] and quantal level-k [Stahl and Wilson, 1994] models and as their sharpness

tends to infinity, their best-response equivalents cognitive hierarchy [Camerer et

al., 2004] and level-k [Costa-Gomes et al., 2001]. Using feature layers we can

also encode all the behavioral features used in Wright and Leyton-Brown [2014].

However, our architecture is not universal; notably, it is unable to express certain

features that are likely to be useful, such as identification of dominated strategies.

3.4 Experiments

Experimental Setup We used a dataset combining observations from 9 human-

subject experimental studies conducted by behavioral economists in which subjects

were paid to select actions in normal-form games. Their payment depended on the

subject’s actions and the actions of their unseen opposition who chose an action

simultaneously.We are interested in the model’s ability to predict the distribution

over the row player’s action, rather than just its accuracy in predicting the most

likely action. As a result, we fit models to maximize the likelihood of training data

P(D|θ) (where θ are the parameters of the model andD is our dataset) and evaluate

them in terms of negative log-likelihood on the test set.

All the models presented in the experimental section were optimized using

Adam [Kingma and Ba, 2014] with an initial learning rate of 0.0002, β1 = 0.9,

β2 = 0.999 and ε = 10−8. The models were all regularized using Dropout [Srivastava
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Figure 3.3: Negative Log Likelihood Performance (smaller is better). The
error bars represent 95% confidence intervals across 10 rounds of 10-fold
cross-validation. We compare various models built using our architecture
to QCH Uniform (pink line) and QCH Linear4 (blue line).

et al., 2014] with drop probability of 0.2 and L1 regularization with parameter 0.01.

They were all trained until there was no training set improvement up to a maximum

of 25 000 epochs and the parameters from the iteration with the best training set

performance was returned. Our architecture imposes simplex constraints on the

mixture weight parameters. Fortunately, simplex constraints fall within the class

of simple constraints that can be efficiently optimized using the projected gradient

algorithm [Goldstein, 1964]. The algorithm modifies standard SGD by projecting

the relevant parameters onto the constraint set after each gradient update.

Experimental Results Figure 3.3 (left) shows a performance comparison between

a model built using our deep learning architecture with only a single action response

layer (i.e. no iterative reasoning; details below) and the previous state of the art,

quantal cognitive hierarchy (QCH) with hand-crafted features (shown as a blue

line); for reference we also include the best feature-free model, QCH with a uniform

model of level-0 behavior (shown as a pink line). We refer to an instantiation of our

model with L hidden layers and K action response layers as an L + K layer network.
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All instantiations of our model with 3 or more layers significantly2 improved on both

alternatives and thus represents a new state of the art. Notably, the magnitude of the

improvement was considerably larger than that of adding hand-crafted features to

the original QCH model.

Figure 3.3 (left) considers the effect of varying the number of hidden units and

layers on performance using a single action response layer. Perhaps unsurprisingly,

we found that a two layer network with only a single hidden layer of 50 units

performed poorly on both training and test data. Adding a second hidden layer

resulted in test set performance that improved on the previous state of the art. For

these three layer networks (denoted (20, 20), (50, 50) and (100, 100)), performance

improved with more units per layer, but there were diminishing returns to increasing

the number of units per layer beyond 50. The four-layer networks (denoted (50, 50,

50) and (100, 100, 100)) offered further improvements in training set performance

but test set performance diminished as the networks were able to overfit the data.

Thus, our final network contained two layers of 50 hidden units and pooling units.

Our next set of experiments committed to this configuration for feature layers

and investigated configurations of action-response layers, varying their number

between one and four (i.e., from no iterative reasoning up to three levels of iterative

reasoning; see Figure 3.3 (right) ). The networks with more than one action-response

layer showed signs of overfitting: performance on the training set improved steadily

as we added AR layers but test set performance suffered. Thus, our final network

used only one action-response layer. We nevertheless remain committed to an

architecture that can capture iterative strategic reasoning; we intend to investigate

more effective methods of regularizing the parameters of action-response layers in

future work.

3.5 Discussion and Conclusions
To design systems that efficiently interact with human players, we need an accurate

model of boundedly rational behavior. We present an architecture for learning

such models that significantly improves upon state-of-the-art performance without

2A one-sided Wilcoxon test to check whether each instantiation is less than QCH Linear4 gave
p-values < 0.001 for all the instantiations.
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needing hand-tuned features developed by domain experts. Interestingly, while the

full architecture can include action response layers to explicitly incorporate the

iterative reasoning process modeled by level-k-style models, our best performing

model did not need them to set a new performance benchmark. This best performing

architecture is equivalent to a composition of the exchangeable matrix layers that

we developed in Chapter 2. This is already a very flexible function approximator, so

it is likely that the additional flexibility provided by modelling iterative reasoning

explicitly was unnecessary to achieve good predictive performance on these bench-

marks. Because both components of the architecture—the feature layers and the

action response layers—are sufficiently flexible to model the mapping from games to

behaviour, we have an identifiability problem where either component could explain

the data. To separate these effects, we would need carefully designed experiments

that separate the contribution of the “strategic” iterative reasoning modeled by the

action response layers and the “nonstrategic” play. Additionally, some natural future

directions, are to extend our architecture beyond two-player, unrepeated games to

games with more than two players, as well as to richer interaction environments,

such as games in which the same players interact repeatedly and games of imperfect

information.
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Chapter 4

Predicting Propositional
Satisfiability via End-to-End
Learning

This chapter changes focus from predicting human decision making to predicting

algorithmic decision making. It is motivated by the question of whether the function

from raw input to satisfiability status is even learnable; a priori it is not obvious that

NP-complete problems should have sufficient structure that we can learn models that

generalize across different sized inputs. In this work we evaluated the architecture

developed in Chapter 2 on SAT problems encoded in conjunctive normal form

(CNF). The CNF encoding is also an exchangeable matrix so it shares the same

structure as the game theory task in Chapter 3, but here we are predicting the

outcome of a deterministic algorithmic decision.

4.1 Introduction
NP-complete combinatorial problems are pervasive in many domains, such as plan-

ning, scheduling, and networking. The propositional satisfiability (SAT) problem

is among the most widely studied of these; indeed, it was the first to be proven

NP-complete. It is also used in many applications (e.g., model checking [Clarke

et al., 2001] and radio spectrum reallocation [Fréchette et al., 2016]) due both to

45



its encoding flexibility and the availability of many high-performance solvers. The

SAT problem asks whether a given Boolean expression evaluates to true. SAT is

typically represented in conjunctive normal form (CNF)–as a conjunction (AND)

over clauses, each of which is a disjunction (OR) over Boolean variables, which may

optionally be negated. The conjunction and disjunction operators are commutative,

so permuting their arguments does not change a problem instance. The two-layer

logical structure of CNF is simple to reason about and is used by most SAT solvers.

Over the past two decades, multiple papers have shown that machine learning

can make accurate instance-specific predictions about properties of SAT problems

(e.g., algorithm runtime prediction [Hutter et al., 2014], algorithm selection [Xu et

al., 2008], and satisfiability prediction [Xu et al., 2012]). Perhaps the key drawback

of this work is its reliance on computationally expensive hand-engineered features.

The computation of most of these features requires between linear and cubic time in

the size of the input. It is difficult to assess whether less computationally expensive

features would yield similar results, to determine whether important features are

missing, and to translate a modeling approach to a new domain. Learning represen-

tations from raw problem descriptions via neural networks is a promising approach

for addressing these obstacles. While there has been recent work in this direction

[Evans et al., 2018; Selsam et al., 2019] that is very interesting from a machine

learning perspective—it is not at all obvious that it should be possible to learn a

solver from data—this work has tended to focus on problems that are trivial from a

combinatorial optimization perspective (e.g., < 1 second to solve by modern SAT

solvers).

One of the most widely studied distributions of SAT instances is uniform random

3-SAT at the solubility phase transition [Cheeseman et al., 1991; Mitchell et al.,

1992]. These problems are easy to generate, but are very challenging to solve

in practice. Indeed, empirical runtimes for high-performance complete solvers

have been shown to scale exponentially with problem size on these instances [Mu

and Hoos, 2015]. Holding the number of variables fixed, the probability that a

randomly generated formula will be satisfiable approaches 100% as the number of

clauses shrinks (most problems are underconstrained) and approaches 0% as the

number of clauses grows (most problems are overconstrained). For intermediate

numbers of variables, this probability does not vary gradually, but instead undergoes
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a sharp phase transition at a critical point (a clauses-to-variables ratio of about

4.26) where the probability that a formula will be satisfiable is exactly 50%. Using

hand-engineered features, past work [Sandholm, 1996; Xu et al., 2012] showed

that an instance’s satisfiability status can be predicted with accuracy higher than

that of random guessing. In particular, Xu et al. built the models that we believe

represent the current state of the art, and they also investigated whether models could

generalize across problem sizes so as to claim to identify “asymptotic” behavior.

They thus limited their models to features that preserve their meanings across

problem scales (e.g., graph-theoretic properties of the constraint structure and the

proximity to integrality of the solution to the linear programming relaxation of SAT,

rather than e.g., the solution quality attained by a simple local search procedure

in a fixed amount of time). They demonstrated that random forest models achieve

classification accuracies of at least 70%, even when trained on tiny (100 variable)

problems and tested on the largest problems they could solve (600 variables).

In our work, we investigate the use of end-to-end deep networks for this problem.

Combinatorial problems are highly structured; changing a single variable can easily

flip a formula from satisfiable to unsatisfiable. We thus believe (and will later show

experimentally) that success in this domain requires identifying model architectures

that capture the correct invariances. Specifically, we encode raw CNF SAT problems

as permutation-invariant sparse matrices, where rows represent clauses, columns

represent variables, and matrix entries represent whether or not a variable is negated.

The deep network architectures we explore are invariant to column-wise and row-

wise permutations of the input matrix, which produce logically equivalent problems.

We evaluate two different architectural approaches. The first is to compose a

constant number of network layers, each with its own trainable parameters; we

use the exchangeable architecture that was presented in Chapter 2, because it was

shown to be maximally expressive and thus generalizes all other such parameter

sharing approaches. The second alternative is to use message passing networks,

which repeatedly apply the same layer for any desired number of steps; we use the

neural message passing implementation of Selsam et al. [2019], as it captures the

correct invariances. Selsam et al.’s approach was already applied to SAT, but the

focus of their work was on the much harder task of decoding a satisfiable solution.
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For that reason, their work only applied the architecture to small problems, which

are trivial for modern SAT solvers.

We evaluated both of these neural network approaches on uniform-random

3-SAT instances at the phase transition, primarily to facilitate comparison with past

work. Despite the fact that our models did not have access to hand-engineered

features and that they were only able to learn linear-time computable features, we

achieved substantially better performance than that of Xu et al. [2012]. Specifically,

we respectively achieved 78.9% and 79.1% accuracy on average across problems

ranging from 100–600 variables for the exchangeable and message passing architec-

tures, compared to 73% accuracy on average for random forests with features and a

random guessing baseline of 50%. On 600-variable problems (which typically take

hours to solve), we achieved > 80% accuracy with both deep learning architectures.

Like Xu et al. [2012], we were able to build models that generalized to much larger

problems than those upon which they were trained. For example, we showed that

the exchangeable architecture from Chapter 2 achieved 81% prediction accuracy on

600-variable problems when trained on 100-variable problems.

Overall, our work introduces the first example of state-of-the-art performance

for the end-to-end modeling of the relationship between the solution to a combina-

torial decision problem and its raw problem representation on a distribution that is

challenging for modern solvers. We expect our work to be useful for the solving

and modeling of SAT and other constraint satisfaction problems.

The rest of this chapter begins with a survey of important related work (Section

4.2); then, we describe the permutation-invariant neural network architectures that

we use to represent SAT instances (Section 4.3). We apply these architectures to

predicting satisfiability (Section 4.4), and validate them by comparing our results to

past work and evaluating their generalization across different instance sizes. Finally,

we summarize our contributions (Section 4.6).

4.2 Related Work

Using learning to reason about NP-complete problems Over the past two decades,

the combinatorial optimization community has become increasingly interested in
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using machine learning to make instance-specific predictions about properties of

problems. Much work has focused on the problem of predicting how long a solver

will take to run [Finkler and Mehlhorn, 1997; Smith-Miles and Lopes, 2012; Hutter

et al., 2014]. These methods have shown surprisingly good performance across a

wide range of problems, solvers, and instance distributions. Indeed, many still find

it counter-intuitive that it is even possible to predict the behavior of algorithms that

run in exponential time in the worst case.

Most work for learning to reason about SAT problems builds on the set of

features first proposed by Nudelman et al. [2004]. They generated 84 features

that they considered predictive of solver performance, which they derived from

known heuristics (e.g., ratio of positive to negative occurrences of clauses and per

variables), tractable subclasses (e.g., proximity to Horn formulae), and other proxies

for problem complexity (e.g., statistics of the solution to LP relaxations of the SAT

problem, and statistics about the progress of SAT solvers over time-bounded runs).

The features vary in computational complexity from trivial (e.g., the size of the

problem) to expensive (e.g., the LP relaxation, which is roughly cubic).

These features have subsequently been combined with a variety of machine

learning models [Xu et al., 2007], and they form the basis of the random forest

models studied by Xu et al. [2012]. Hutter et al. [2014] used hand-engineered

features to predict per-instance runtimes; features have also been used to build

algorithm portfolios, where performance can be improved by selecting different

solvers on a per-instance basis [Xu et al., 2008; Lindauer et al., 2015].

Neural network representations for combinatorial problems [Selsam et al., 2019]’s

work is the closest in spirit to our own. They learned a neural SAT solver that

performs “search” via neural message passing. They focus on the problem of

solving SAT formulas, but they do so by supervising a message passing architecture

with only the satisfiability status of an instance. They therefore cast the problem

of determining how to instantiate variables as one of predicting the formula’s

satisfiability status, and refine this prediction with every recurrent iteration.

Allamanis et al. [2016] and Sekiyama and Suenaga [2018] used TreeNNs to

learn end-to-end models for instance-specific predictions of propositional formulae.

They considered arbitrary propositional formulae, which lack the same logical
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invariances of formulae in CNF, and they considered problems with at most 50

variables.

Loreggia et al. [2016] created fixed-size representations for SAT instances by

converting CNF representations to 128×128 images and applying a convolutional

neural network. Although this representation is not invariant to variable or clause

permutations, the resulting algorithm selector outperformed the best individual

solver (but still fell far short of methods based on hand-engineered features).

Both Li et al. [2018] and Selsam and Bjørner [2019] used graphical neural

networks to learn heuristics for guiding SAT solvers.

Deep networks have also been used to attack a variety of combinatorial problems

beyond SAT; see Bengio et al. [2018] for a recent survey. Most notably, Evans

et al. [2018] use a recurrent network for predicting logical entailment; this RNN

architecture is not permutation-invariant, and it does not scale to the size of instances

we considered in our own work. Prates et al. [2019] also studied predicting optimal

tours in Euclidean traveling salesman problems.

Deep networks for exchangeable data A large body of recent work has studied

deep network architectures for exchangeable arrays, such as sets [Zaheer et al.,

2017], matrices and tensors [Hartford et al., 2018; Bloem-Reddy and Teh, 2019],

and graph structured data [see Hamilton et al., 2017b; Battaglia et al., 2018, and

references therein]. All of these approaches build deep network layers respecting the

in- or equi- variances1 implied by the exchangeable array (e.g., sets are permutation-

invariant, while matrices are equivariant under permutations of rows or columns),

but they differ in design decisions about which representations to aggregate over,

how multiple layers are composed, and which permutation-invariant functions are

used to perform the aggregation.

In this chapter, we explore the first two of these design dimensions. First, we

use the exchangeable matrix architecture presented in Hartford et al. [2018] because

it supports a natural CNF-style matrix encoding of SAT problems without requiring

1A function is equivariant if permutations of its input only result in a corresponding permutation of
its output, and is invariant if permutations of its input leave the output unchanged. For instance, given
a permutation matrix Π and an input matrix X ∈Rn×m, a function g :Rn×m→ Rn×m is equivariant
iff g(ΠX) = Πg(X) for all Π and X, and g :Rn×m→R is invariant iff g(ΠX) = g(X) for all Π and X.
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Figure 4.1: An example encoding from a small SAT problem in conjunctive
normal form to an exchangeable matrix; [0,0] entries are not shown
because they are not explicitly represented in the sparse encoding.

an intermediate graph representation. It was also shown to be maximally expressive

among parameter sharing-based architectures for exchangeable matrices, and thus

generalizes all approaches based on parameter sharing. Second, in terms of deciding

how multiple layers are composed, exchangeable layers can either be treated like

standard feedforward layers and stacked (with each layer having its own trainable

parameters), or the same layer can be repeatedly applied for some number of steps as

with a recurrent network. The latter approach is often referred to as neural message

passing2 [Gilmer et al., 2017], and was used by Selsam et al. [2019] for learning

to solve SAT problems; in this chapter, we evaluate their NeuroSAT model on the

SAT prediction problem. More expressive attention-based aggregation functions

[Vaswani et al., 2017] offer the hope of further performance improvements, but their

quadratic complexity makes them infeasible for problems of the size that we study.

4.3 Model Architecture

Data representation A SAT instance with n clauses and m variables in CNF can

be represented as an n×m×2 clause-variable tensor, where entry (i, j) is the one-hot

2The term “message passing” refers to an aggregation step in a graph-based model, so it is
sometimes also used for deep networks with separate feedforward-style layers. In this thesis we limit
it to the case where the same layer is applied repeatedly, analogous to the repeated application of local
updates in message passing for graphical models.
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vector [1,0] if the true literal for variable i appears in clause j, [0,1] if the false

literal for variable i appears in clause j, and [0,0] otherwise (see Figure 4.1). This

tensor is a sparse exchangeable tensor: each clause will typically only reference

a few variables (exactly three in the case of random 3-SAT), so most entries in

the tensor will be the zero vector, and permuting the first two dimensions (rows or

columns) will not change the SAT problem’s satisfiability status.

We denote this input tensor X and let I = {(i, j) : clause i references variable j}

denote an index set of the non-zero entries of X . The number of non-zero entries of

X is given by |I| = m̄n, where m̄ is the average number of variables that appear in

each clause. For the random 3-SAT problems that we consider in the experiments

m̄ = 3, so |I| = 3n.

In order to predict the satisfiability of a problem, we need to map from the raw

representation of the problem, X , to a scalar output, y ∈ [0,1], that indicates the

probability of satisfiability. We achieve this in two steps that are trained jointly.

First, we map each element of the raw input X to a D-dimensional embedding, using

a permutation-equivariant function φ :R|I|×2→R|I|×D. We then pool the output of

φ(X) to produce a single D-dimensional representation of the SAT problem. This

is fed into a second function, ρ :RD→R, which is used to predict the probability

that the problem is satisfiable.

We represent φ using a sequence of exchangeable matrix layers [Hartford et al.,

2018]. These layers apply to tensors in Rn×m×k; a tensor consists of k channels of

exchangeable matrices, each of which is equivariant with respect to permutations of

their n rows and m columns. For any given layer, the oth output channel’s (i, j)th

entry can be computed as follows (with bias terms omitted for clarity):

Yo,i, j = σ

( K∑
k=1

(
θ〈k,o〉1 Xi, j,k +

θ〈k,o〉2

|C( j)|

∑
i′∈C( j)

Xi′, j,k

+
θ〈k,o〉3

|V(i)|

∑
j′∈V(i)

Xi, j′,k +
θ〈k,o〉4

|I|

∑
i′, j′∈I

Xi′, j′,k

))
,

where σ(·) is a nonlinear activation function applied element-wise, X denotes an

n×m×K input tensor, θ〈k,o〉i are trainable weights, C( j) denotes the indices of all
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Figure 4.2: Illustration of the exchangeable architecture.

variables referenced in clause j, and V(i) denotes the indices of all clauses which

contain variable i.

Exchangeable architecture While the notation is complex, an exchangeable layer

has a simple interpretation as a feed-forward network applied to each layer’s literal

representation (the terms associated with θ1), as well as the respective mean-pooled

representations of the associated variables (θ2 terms), clauses (θ3 terms), and the

entire problem (θ4 terms). The latter three terms provide the mechanism through

which the network is able to share information about the assignment of literals

between associated clauses and variables. By stacking multiple layers, longer chains

of information propagation become possible.

The second function, ρ, acts on the pooled the output of φ(X). We use a standard

multi-layer perceptron as follows:

ŷ = ρ

(
1
|I|

∑
i, j∈I

φ(Xi, j,:); β
)
,

where φ(Xi, j,:) is a D-dimensional vector associated with clause i and variable j, and

ρ is a multi-layer perceptron with weights β.

Given a datasetD = {(Xi,yi)}i∈[1,...,n] of SAT problems, Xi, and targets yi ∈ {0,1}

indicating whether or not a given problem is satisfiable, we train both networks

jointly by optimizing β and θ to minimize the binary cross-entropy loss

LS =
∑

(Xi,yi)∈D

−yi log(σ(ŷi))− (1− yi) log(1−σ(ŷi)).
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where σ(x) = 1
1+e−x .

Assignments In our training set, we often have access to a satisfying assignment3

in addition to a formula’s overall satisfiability. This architecture can easily be

extended to also predict satisfying these variable assignments, which can then be

used as an auxiliary prediction task to (hopefully) learn better representations of

SAT problems; at test time, these predictions are ignored. Given the representation

φ(X), we can pool across clauses to produce variable-specific representations. Then,

we can apply a third function, µ :Rm×D→Rm, which yields the probability of each

variable taking the value true. Again, we use a multi-layer perceptron to represent

µ, v̂ j = µ
(

1
|C( j)|

∑
i′∈C( j)φ(Xi′, j,:)

)
.

As before, µ is trained in conjunction with the rest of the architecture by opti-

mizing binary cross-entropy loss for each variable. The combined loss is,

L =
∑

(Xi,yi,vi)∈D

(
LS(yi, ŷi) +

1
‖v(i)‖0

∑
j

LA(vi, j, v̂i, j)
)
,

where LA(·, ·) is the binary cross-entropy loss function, vi is the true vector of

assignments for problem i, and ‖v(i)‖0 is the length of vi, i.e. the number of

variables in the problem.

Message passing In the exchangeable model described above, each layer has its

own set of parameters. Another approach is to have all layers share the same set

of parameters in a manner similar to an unrolled recurrent neural network (RNN),

where each “layer” corresponds to a single recurrent step. This approach is taken by

the NeuroSAT architecture.

NeuroSAT represents SAT problems as a bipartite graph with one set of vertices

containing true and false literals, and the other clauses; edges denote a literal

appearing in a clause. The model has two separate RNNs – one for clauses and one

3For any given problem, we only have access to a single assignment—the assignment that the
solver found when determining a given formula’s satisfiability—but any formula may have many
assignments. As a result, by maximizing the likelihood of an assignment, even the Bayes optimal
model will have some uncertainty over the true assignment implied by the distribution over possible
solutions.
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for literals. Each iteration involves first updating the clauses by aggregating over

the neighboring literals and applying the clause RNN, and then updating the literals

by aggregating over the updated neighboring clauses and applying the literal RNN.

Each iteration can be expressed formally as

(C(t+1),C(t+1)
h )← gc([C(t)

h ,
∑

i∈N(C)

fc(L(t)
i )])

(L(t+1),L(t+1)
h )← gl([L

(t)
h ,

∑
i∈N(L)

fl(C
(t+1)
i )])

where gc(·) and gl(·) denote the clause and literal RNNs, Ct and Ct
h are the clause

representation and recurrent hidden state (similarly for the literals), fc(·) and fl(·)

are multilayer perceptrons (MLP), and N(·) returns the indices of the neighbors of

a clause or literal.

By applying the clause and literal RNNs sequentially and using MLPs in the

aggregation operation, the NeuroSAT layer introduces multiple intermediate non-

linearities that make exact comparisons with the exchangeable layer impossible.

Loosely, the recurrent hidden state plays the same role as the θ1 terms, and aggrega-

tion across clauses and literals corresponds to a nonlinear version of the θ2 and θ3

terms.

4.4 Experimental Setup

Data generation To evaluate the networks, we generated uniform-random 3-SAT

instances at the solubility phase transition. Following Crawford and Auton [1996],

we used a clause (n) to variable (m) ratio of n = 4.258m+58.26m−2/3 to approximate

the location of the phase transition. We created 11 datasets, each with a fixed

number of variables ranging from 100 to 600 variables at intervals of 50; each

dataset contained 10,000 instances, including exactly 5000 satisfiable instances

and 5000 unsatisfiable instances.4 100-variable instances can trivially be solved by

modern SAT solvers in milliseconds; 300-variable instances require several seconds;

and 600-variable instances take several hours to solve.
4To confirm that we sampled instances at the phase transition, we examined the fraction of

satisfiable instances that we generated; we found no evidence that it diverged significantly from 50%.
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We believe that this dataset constitutes a useful benchmark for deep models on

exchangeable data. Our data generation process creates hard-to-predict problems,

but with a noise-free target that offers the asymptotic potential for 100% accuracy.

Indeed, training sets of arbitrary size can be generated (albeit at significant com-

putational cost), and testing whether models generalize to unseen instance sets is

easily possible because of the natural relationship between sizes.5

For our experiments, we randomly split both satisfiable and unsatisfiable prob-

lems of each instance size into training, validation, and test sets according to an

80:10:10 ratio. We report the test performance of the parameter checkpoints which

performed best on the validation set.

Network training procedure We evaluated four variants of deep network archi-

tectures: the standard exchangeable architecture and message passing NeuroSAT

architecture predicting only satisfiability, and an extension to both architectures

where we jointly predicted satisfying variable assignments.

For the exchangeable architecture, we adapted the public implementation

of exchangeable matrix layers from Hartford et al. [2018]. We instantiated the

permutation-equivariant portion of the exchangeable architecture as eight exchange-

able matrix layers with 128 output channels, with leaky RELU as the activation

function. We mapped the final layer to an output width of D = 64, which was pooled

to a vector before being mapped to the output. We also experimented with inserting

a hidden layer between the pooled vector and the output, but observed no significant

impact on performance.

For training the exchangeable architecture, we used the Adam optimizer with

a learning rate of 0.0001, and mini-batches of 32 examples. Since instances can

vary in size, with some being very large, we accumulated gradients for the mini-

batches sequentially, back-propagating losses individually for each instance. This

slowed training, but was necessary because entire mini-batches could not always be

accommodated in memory.

For the message passing network, we used Selsam et al. [2019]’s implementation

in the Tensorflow framework. We used the hyperparameters of Selsam et al. [2019]:

5For the raw data and the full details of our data generation process, please see http://www.cs.ubc.
ca/labs/beta/Projects/End2EndSAT/.
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a dimension of 128 for clause and variable embeddings, 3 hidden layers and a

linear output layer for each of the MLPs, a scaling factor of 10−10 for the `2 norm

to regularize the parameters, 32 iterations of message passing for each problem,

a learning rate of 2× 10−5 for Adam, and a clipping ratio of 0.65 for clipping

gradients by global norm. To jointly predict assignments and satisfiability, we added

an additional MLP to the aggregation operation that maps literal representations

to assignments for each variable, and optimize the same combined loss function

described in Section 4.3. Like Selsam et al., we created batches of problems

containing up to 12,000 clause and literal nodes that we fed through the network at

once. We selected the best-performing checkpoint with a validation set, and report

test set accuracy obtained by running the model with 32 message passing iterations

per problem.

Baselines To compare our results with the state of the art, we evaluated the

performance of decision forests trained on the hand-engineered features used by Xu

et al. [2012]. We also implemented a feed-forward neural network that took as input

the same hand-engineered features, to ensure that any performance differences were

not driven by Xu et al.’s choice of model family.

We also compared our results to two simple baselines that could be trained

end-to-end. First, we considered convolutional neural networks (CNNs) to evaluate

the impact of capturing permutation invariance. The input to the CNN is a dense

representation of the sparse tensor described in Section 4.3. Additionally, to deter-

mine whether a simple version of permutation invariance was sufficient to achieve

good performance, we also investigated a permutation-invariant nearest-neighbor

approach. We used the graph edit distance between variable-clause graphs to deter-

mine nearest neighbors, and predicted the satisfiability status of a new point as the

satisfiability status of its nearest neighbor.

4.5 Experimental Results

Prediction accuracy We evaluated prediction accuracy for the four variants of

deep neural network architectures and the four baselines. For the nearest-neighbor

57



baseline, we only considered the 100- and 200-variable datasets because of the high

computational cost of computing graph edit distances; for all other approaches, we

considered 11 fixed-size datasets.

Both nearest neighbor and CNNs performed poorly. Nearest neighbor never

achieved prediction accuracies above 53%, even when we used the expensive

Hausdorff graph edit distance. The performance of CNNs consistently approached

that of random guessing, achieving no more than 50.5% on any of the 11 datasets

after 48 hours of training. We concluded that permutation-invariant architectures

made a significant impact on predictive performance.

Table 4.1 presents the performance results for the permutation-invariant meth-

ods. Like Xu et al., we observed that prediction accuracy increased with instance

size for the exchangeable variants of the permutation-invariant architecture. With

the exchangeable model variant predicting only satisfiability, we achieved predic-

tion accuracies between 71% and 82% — 1–7% higher than random forests and

1–8% higher than the fully-connected neural network using hand-engineered fea-

tures. A two-sided Wilcoxon signed-rank test for differences in the distribution of

performance across all 11 datasets between each hand-engineered model and the ex-

changeable variant predicting only satisfiability showed the results were significant

(p < 0.01 for both tests of the models on hand-engineered features).

Using the exchangeable model variant where satisfiability and assignments

were jointly predicted, we achieved prediction accuracies between 72% and 84%,

with an improvement in the model by an additional 1–2% across all datasets. We

achieved similar levels of performance with message passing architectures, achiev-

ing prediction accuracies usually between 75% and 83%, however accuracies were

roughly uncorrelated with instance size. Using the message passing variant where

satisfiability and assignments were jointly predicted, we achieved an additional

1.6% accuracy on average. Averaged across all datasets, the exchangeable and

message passing architectures with assignments respectively achieved 78.9% and

79.1% prediction accuracy. Neither architecture was better than the other on more

than 6/11 of the instance sets. In terms of prediction accuracy when testing on
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Hand-Engineered Exchangeable MP
#Vars RF NN SAT +Assign SAT +Assign

100 0.702 0.704 0.712 0.726 0.675 0.751
150 0.712 0.714 0.731 0.745 0.778 0.771
200 0.734 0.718 0.760 0.772 0.767 0.781
250 0.703 0.723 0.776 0.800 0.758 0.788
300 0.744 0.725 0.789 0.800 0.758 0.788
350 0.734 0.730 0.787 0.809 0.834 0.812
400 0.711 0.710 0.765 0.790 0.777 0.781
450 0.700 0.710 0.788 0.789 0.774 0.803
500 0.773 0.778 0.800 0.809 0.791 0.795
550 0.756 0.761 0.804 0.810 0.789 0.813
600 0.813 0.810 0.811 0.837 0.816 0.818

Table 4.1: Comparison of prediction accuracy for satisfiability in the epoch
with the lowest validation error. RF denotes random forests; NN, the
standard feed-forward network; Exchangeable, the standard exchangeable
network; and MP, the message passing model of Selsam et al. [2019].
SAT denotes the permutation-invariant model variants trained to predict
satisfiability; +Assigns, the permutation-invariant model variants trained
to predict satisfiability and satisfying assignments. Boldface indicates the
best-performance.

the same instance sizes used for training, we found no reason to hold a preference

between the exchangeable and message passing architectures6.

Running time Permutation-invariant neural networks are far more expensive to

train than the random forest baseline, requiring at least 40 hours of training time

and 500 MB of GPU memory (for exchangeable networks; message passing is

more expensive, requiring 0.6 to 3.3 GB per instance). However, evaluating this

class of models requires only time linear in the size of the input, whereas the hand-

engineered features upon which the random forest models depend have roughly

6A Wilcoxon test does not detect a significant difference between the performance of the exchange-
able model with assignments and either message passing architecture (p = 0.12 and p = 0.96 for the
variants without and with assignments, respectively)
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Figure 4.3: Average running times per instance as size varies for the exchange-
able architecture and hand-engineered features. Note the log scale on the
y-axis.

cubic time complexity. This asymptotic difference is not overwhelmed by constants:

at the input sizes we investigated, exchangeable models are faster to evaluate by

several orders of magnitude, as shown in Figure 4.3. We note that this difference

might make such models particularly attractive for constructing algorithm portfolios,

where time saved on feature computation can be reallocated to solving problems.

Generalizing across sizes To verify that permutation-invariant models are able to

capture general structural properties of the given SAT instances rather than simply

memorizing instances at particular sizes, we evaluated the prediction accuracy of

networks trained on 100-variable instances using all of the other datasets. Our

results, along with analogous results for random forests, are shown in Table 4.2.

With the exchangeable architecture trained on 100-variable instances, we achieved

nearly undiminished performance and definitively outperformed random forests on

all instance sizes. Notably, the model trained on our dataset of trivial 100-variable

random 3-SAT instances achieved 81% accuracy on the dataset of hard 600-variable

3-SAT instances. We again observed the increase in prediction accuracy with

instance size reported by Xu et al.

Prediction accuracy for message passing was usually between 68–74%. We note

that this range is similar to the prediction accuracy achieved when testing message

passing on 100-variable instances. By comparison, considering models trained on

100-variable instances, the performance of the message passing model did not gen-
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#Vars RF-100 Exch-100 MP-100

150 0.695 0.758 0.734
200 0.695 0.759 0.704
250 0.654 0.776 0.722
300 0.711 0.780 0.729
350 0.705 0.791 0.725
400 0.681 0.756 0.711
450 0.692 0.778 0.699
500 0.716 0.777 0.686
550 0.722 0.768 0.669
600 0.739 0.809 0.683

Table 4.2: Comparison of satisfiability prediction accuracy achieved by testing
a model trained on 100-variable instances on other datasets. RF-100
denotes the random forests trained on 100 variables and tested on other
sizes; Exchangeable-100, the exchangeable network trained to predict
satisfiability and assignments on 100 variables, and tested on other sizes;
and MP-100, the message passing model of Selsam et al. [2019] trained
on 100 variables and tested on other sizes. Boldface indicates the best-
performing approach for each dataset. Wilcoxon signed-rank test across
these 10 datasets shows Exch-100 significantly improves on the other
two models (p < 0.01) and no significant different between MP-100 and
RF-100 (p = 0.695)

eralize as well as the exchangeable architecture, which achieved better performance

on all instance sizes. In fact, we observed that the accuracy of message passing

decreased with instance size, and that the exchangeable architecture achieved 12%

better accuracy for the biggest instance sizes (550 and 600 variables).

Overall, the exchangeable architecture and message passing achieved com-

parable performance when trained on the same distribution. However, because

of its superior generalization performance and lower memory requirements, we

recommend exchangeable models over message passing for predicting satisfiability.

SAT invariances Visualizing the embedding space provides a way to verify that the

exchangeable architecture performed as desired. We used the following observation
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Figure 4.4: In the space of problem embeddings in the exchangeable architec-
ture, orange lines show paths through towards the SAT portion of the
space as clauses are removed from an UNSAT instance, with the thicker
line showing the average path. The original 64-dimensional space is
projected down to the first two principal components of a model trained
on the 300-variable dataset.

to examine its behavior as instances were modified: the more clauses are removed

from any unsatisfiable instance, the greater the chance that it will become satisfiable,

since removing a clause can never reduce the solution space. Taking a random in-

stance predicted to be unsatisfiable by the network, we iteratively removed randomly

selected clauses. At every step, we recorded the network’s pooled representation of

the instance. A projection of the paths from 20 independently sampled trajectories

is shown in Figure 4.4. As clauses were removed, the representation of the instance

shifted from the portion of the space associated with unsatisfiable instances to the

portion associated with satisfiable instance and the associated predicted probability

of satisfiability also increased, as expected. This shows that the network has cor-

rectly learned that these simple transformations that makes the problem iteratively

less constrained, also make the problem more likely to be satisfiable.

Latent space distribution We explored the distribution of problems in the ex-

changeable architecture’s latent space as problem size changed. Figure 4.5 shows a

kernel density plot of these distributions from the final exchangeable layer for the

exchangeable architecture projected down to the first principal component for both

satisfiable and unsatisfiable instances in four different-sized datasets. We observed

that the instances become more concentrated around a particular point as problem
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Figure 4.5: Comparison of variance in problem embeddings of the exchange-
able architecture as instance size increases. The original 64-dimensional
space is projected down to the first principal component based on models
trained with 300 variables. For each size, a kernel density function is fit
for UNSAT and SAT problems.

sizes increased. Certain functions on random graphs converge as n→∞ (e.g., the

size of the maximum clique in Erdos-Renyi graphs). We suspect that the deep

networks are learning a function that concentrates with increasing problem size.

4.6 Conclusions
This chapter is the first to study end-to-end learning of the satisfiability status of em-

pirically challenging SAT problems based on their CNF representations. We showed

that both deep exchangeable and neural message passing models achieved state-of-

the-art prediction performance on random 3-SAT problems at the phase transition,

consistently outperforming models based on sophisticated hand-engineered features

that have been central to machine learning in SAT for over a decade. These mod-

els also have a clear computational advantage over hand-engineered feature-based

models: for 600-variable problems, a forward pass of the exchangeable architecture

was more than two orders of magnitude faster than computing hand-engineered

features. We also showed out-of-sample generalization to much larger instance

sizes at nearly undiminished levels of accuracy. Indeed, the exchangeable network

architecture trained on 100-variable instances (milliseconds to solve) achieved per-
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formance on 600-variable instances (hours to solve) which was on par with that of

hand-engineered feature-based models trained on 600-variable instances.
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Part II

Causal Inference with
Instrumental Variables
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Chapter 5

DeepIV

In Part I, we leveraged knowledge about structural invariances in the data to design

and apply equivariant deep network architectures that were able to generalize across

different sized instances, and even to different datasets in the extreme cases shown

in Section 2.4.2. In this second part, we develop methods to generalize in a different

way: predicting how decision makers will act under new policies, using only offline

data collected under an incumbent policy. The key to this causal inference approach

is its use of “instrumental variables”: variables that only affect the data generating

process in a specific, limited way. We leverage this structure to predict the effect of

interventions that result in changes in distribution.

5.1 Introduction
In this chapter we aim to develop machine learning methods that allow us to predict

the effect of policy changes or interventions on some data generating process (DGP).

To see the difference between predicting the effect of interventions and standard

prediction problems, consider the following example: a data scientist is trying to

build a sales prediction model that can predict sales of airline tickets, y, given prices,

p. They collect a dataset of historical prices and ticket sales (shown in Figure 5.1

(left)) and estimate a model, ĝ : p→ y (the line shown in Figure 5.1 (left)). For

the purposes of this example, we can assume that the model is the Bayes optimal

predictor—that is, it is the minimizer of expected generalization error—and so it
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Figure 5.1: An example of confounding: the apparent positive correlation
between sales and price (left) is the result of the effect of different
holidays on the price-sales relationship (right).

performs well on held out data when responding to queries of the form, “what will

sales be when we observe some price, p?” But, notice that if we instead tried to use

the model to ask the policy question, “how do we set prices in order to maximize

sales?”—equivalently, what is p∗ = argmax′p ĝ(p′)—the upward sloping relationship

between price and sales implies that the model predicts we could set price to infinity

and achieve infinite sales.

This seems puzzling: how could a model that accurately predicts sales under

the current pricing regime make such obviously wrong policy recommendations? In

this example, this occurs because there is a latent variable that affects both prices

and sales, and as a result, at different times of year there are different price–ticket

sales relationships (Figure 5.1 (right)). For example, December is a popular time to

fly because people want to get home to visit family, but airlines are aware of this

and set prices high, knowing that enough people will be prepared to fly despite the

higher than normal prices. So at any particular time of year, the real price–ticket

sales relationship is downward sloping (as we would expect), but because it shifts

outward during holidays, price and tickets sales appear positively correlated.

Now, we could correctly estimate the true price–ticket sales relationship by

fitting a model that conditions on both price and time of year (as shown in the

downward sloping curves in Figure 5.1 (right)), but it should concern us that we
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Figure 5.2: In the observational distribution (left), prices react to holidays
according to some (unknown) policy. In the interventional distribution
(right), we set price to some fixed value.

make very different policy recommendations (increase or decrease price in Fig. 5.1

(left) and (right) respectively) depending on the variables on which we choose to

condition. In this example, we have a strong prior of what the true relationship

should look like, but in general that will not be the case. So, how do we know which

of the two policy recommendations to trust in settings when we do not already know

what the true effect should look like?

To address this, we first need to distinguish between the observational distribu-

tion and the interventional distribution. In our example, the data scientist has access

to a dataset of examples drawn from some subset of the variables that make up the

observational distribution: they observe price, p, and ticket sales, y, but not holidays,

x. Under this distribution, price is set according to some unknown policy (indicated

by the arrow from holidays to price in Figure 5.2), but as long as this policy is not

changed, predictions of the form E[y|p] will perform well under held-out data on

this distribution. To predict the effect of policy interventions, however, we need

to reason about the interventional distribution, predicting E[y|do(p′)], where the

do(·) operator indicates that we replace the observed distribution over prices with

some arbitrary fixed value p′ and consider the resulting conditional distribution

(graphically, we cut all incoming edges into the price variable Figure 5.2 (right),

[Pearl, 2009]); if we had access E[y|do(p′)] for all p′, we could then optimize over

p′ to make policy recommendations.

The challenge is that we only have access to the observational distribution but

want to make predictions about the interventional distribution. One way to proceed
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would be to discard the observational data and instead collect interventional data

directly via a randomized control trial. When possible, this is regarded as the gold

standard for causal inference because all confounding is removed by design. But,

there are many settings where it is either unethical, too expensive or simply not

possible to run an experiment where we explicitly randomize the treatment variable

(price in our example). The alternative is to work with observational data, but doing

so requires explicit assumptions about the causal structure of the DGP1 [Bottou

et al., 2013]. If these assumptions imply that the variables that we observed are

sufficient to “control” for confounding—in our example we only have to consider

holidays; more generally one needs a valid adjustment set, x [see Pearl, 2009, for

details]—then we can estimate the effect of interventions using the adjustment

formula, E[y|do(p′)] = Ex∼P(x)[E[y|p′, x]]. This would be equivalent to estimating

the price–ticket sales relationship at each different time of year (the curves Figure

5.1 (right)) and then taking a weighted average of these estimates, weighted by the

marginal distribution of x. In this unconfounded setting, there are many efficient

estimators [see e.g. Athey and Imbens, 2016; Johansson et al., 2016], but they all

rely on the assumption that the variables that make up a valid adjustment set are

observed.

What do we do in settings where confounding is unavoidable? For example, the

data scientist may know about the holiday effect, x, but sometimes demand for air

tickets is high due to conferences, e, whose attendees are also price insensitive. If

the incumbent pricing policy raises prices for conferences, we would again have

high price, high ticket sales observations which would bias naive estimates. In these

cases, the causal effectE[y|do(p′)] is not identifiable without additional assumptions.

Here we assume we have access to an instrumental variable (which we will denote

z): some variable which, by definition, only affects the response variable (ticket

sales) via its effect on the treatment variable (price); see Figure 5.3. In our airline

example, the cost of fuel could be such an instrument if its variation is independent

of demand for airline tickets and it affects tickets sales only via its effect on prices.

1This chapter focuses on causal inference which is the task of estimating a causal effect given a
set of identifying assumptions (typically supplied by a domain expert) which can be expressed as a
causal graph. One could also attempt to identify the causal graph from data, but this causal discovery
task is especially challenging for the problems we focus on in this chapter (allowing for unobserved
confounding). See Peters et al. [2017] for details.
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Figure 5.3: A general structure of the DGP under our IV specification; dotted
lines indicate edges which are allowed under the IV assumptions, but are
not used in our running example. x represents observable features, p is
our treatment variable of interest, z represents the instruments, and latent
effects e influence the response y additively. In our running air-travel
demand example, the treatment variable is price, p, sales is the response,
y, and holidays are observable covariates, x. There is a big ‘conference’,
e, unobserved to the policy-maker, that drives demand and (due to the
airline’s pricing algorithms) price. The instrument is the cost of fuel, z,
which influences sales only via price.

If we have a valid instrumental variable, instrumental variable estimation is an

inverse problem. We can observe both the effect of the instrument on the treatment

variable (how ticket prices react to changes in the fuel price) and the effect of the

instrument on the response variable (how ticket sales react to changes in the fuel

price) and because we assumed that the only relationship between the instrument

and the response is that which is mediated via the treatment, we can attribute the

difference between these two observations to the causal effect of the treatment on the

response. More formally, the instrument’s effect on the response can be expressed as

E[y|z] and instrument’s effect on the treatment is P[p|z], and both of these quantities

can be estimated from the observational distribution. We can then estimate the
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causal effect by finding the function g : p→ y, such that E[y|z] = E[g(p)|z] [Newey

and Powell, 2003]. If there is only one g that makes this equality hold, then the

problem is identified. In general, this will not be the case [Balke and Pearl, 1997] so

we need additional structural assumptions about the true function that determines

our response variable y. For example, if we assume linearity such that y = βp + e

for some unknown β, then by linearity of expectation, E[y|z] = βE[p|z], so β can

be estimated in two stages by first regressing p on z to estimate E[p|z], and then

using the predicted values of p in a second stage regression.2 This is the widely

used two-stage least squares approach which is a key technique in econometrics and

epidemiology.3

A weaker assumption, which we leverage in this chapter, is to assume addi-

tive unobserved confounding, such that y = g (p, x) + e for some true function g .

Using this assumption we derive a deep network-based approach to estimating

E[y|do(p), x]. Our approach also has two stages: first, we model the conditional

distribution of the treatment variable given the instruments and covariates using

standard conditional density estimation techniques. Second, we optimize a loss

function involving integration over the conditional treatment distribution from the

first stage. Both stages use deep neural nets trained via stochastic gradient descent

[Robbins and Monro, 1951; Bottou, 2010]. We also present an out-of-sample causal

validation procedure for selecting hyperparameters of the models on a validation

set. We refer to this setup as the Deep IV framework.

Section 5.3 describes our general IV specification and its decomposition into

two learning tasks. Section 5.4 outlines neural network estimation for these tasks

with particular attention paid to the SGD routine used in model training and our

causal validation procedure. Section 5.5 presents experimental results that illustrate

the benefits of our methods, while Section 5.5.2 applies Deep IV for inference on

the causal effect of ad position in web search results.

2Note that trying to estimate β directly via linear regression would be biased because p 6⊥ e. In our
example, this naive approach would product the upward sloping curve shown in Figure 5.1 (left).

3This assumption of “constant treatment effects” implied by the constant β implies that every
individual responds in exactly the same way to a treatment. This is obviously an unrealistic assumption
in many settings where IV methods are applied. In the case of binary treatments and instruments
weaker assumptions are possible; see Angrist et al. [1996].
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5.2 Related work
The IV framework has a long history, especially in economics [e.g., Wright, 1928;

Reiersøl, 1945]. It provides methods for learning the regression function that

relates the treatment and response variables under the interventional distribution

for DGPs that conform to the graphical model shown in Figure 5.3 [Pearl, 2009].

Most IV applications make use of a two-stage least squares procedure [2SLS;

e.g., Angrist and Pischke, 2008] that applies a model of linear and homogeneous

treatment effects (e.g., all airline customers must have the same price sensitivity).

Nonparametric IV methods from the econometrics literature relax these assumptions

[e.g., Newey and Powell, 2003; Darolles et al., 2011]. However, these methods

typically work by modeling the outcome as an unknown linear combination of a

prespecified set of basis functions of the treatment and other covariates (e.g. Hermite

polynomials, wavelets, or splines) and then modeling the conditional expectation

of each of these basis functions in terms of the instruments (i.e., the number of

parameters is quadratic in the number of basis functions). This requires a strong

prior understanding of the DGP by the researcher; also, the complexity of both

specification and estimation explodes when there are more than a handful of inputs.

5.3 Nonlinear instrumental variable estimation
We aim to predict the value of some outcome variable y (e.g., sales in our airline

example) under an intervention in a policy or treatment variable p (e.g., price). There

exists a set of observable covariate features x (e.g., holidays) that we know affect

both p and y. There also exist unobservable latent variables e (e.g., conferences)

that may affect p and y. We aim to recover E[y|do(p), x] in the context of the

graphical model given by Figure 5.3, where the do(·) operator indicates that we have

intervened to set the value of the policy variable p [as per Pearl, 2009]. We assume

the y is structurally determined by p, x and e as

y = g (p, x) + e. (5.1)

That is, g (·) is some unknown and potentially non-linear continuous function of

both x and p, and we assume that the latent variables (or “error”) e enter additively
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with unconditional mean E[e] = 0. In our example, this amounts to assuming that

sales might be some flexible nonlinear function of price and observed confounding

factors like holidays, but that the conferences only have an additive effect on sales.

Because any latent confounding factors, e, are potentially correlated with the inputs

we allow E[e|x, p] , 0 and, in particular we expect that, E[pe|x] , 0.

The true function g (·) is not identifiable because the latent confounder’s affect

on y could vary as a function of x. Instead we will focus on estimating conditional

causal effects, E[y|do(p), x] [Pearl, 2009],

h (p, x) ≡ E[y|do(p), x] = g (p, x) +E[e|x], (5.2)

Note that we condition only on x and not p in the term E[e|x]; this term is typically

nonzero, but it will remain constant under arbitrary changes to our policy variable p.4

The conditional causal effect is sufficient to evaluate policy options (e.g. changing

the ticket price from p0 to p1) because we can look at the difference in outcomes

h (p1, x)−h (p0, x) = g (p1, x)− g (p0, x).

In standard supervised learning settings, the prediction model is trained to fit

E[y|p, x]. This will typically be biased against our structural objective because

E[y|p, x] = g (p, x) +E[e|p, x] , h (p, x) (5.3)

since our treatment is not independent of the latent errors by assumption and hence

E[e|p, x] , E[e|x]. This object is inappropriate for policy analysis as it will lead to

biased treatment effects:

E[y|p1, x] −E[y|p0, x] = g (p1, x) − g (p0, x) +

(
E[e|p1, x] −E[e|p0, x]

)
. (5.4)

In our airline example, the higher than normal prices and demand during conferences

would imply that E[e|p1, x]−E[e|p0, x] will be positive; this occurs because in the

observed distribution, higher than normal prices were observed during higher than

4It may be easier to think about a setting where e ⊥⊥ x, so that the latent error is simply defined as
being due to factors orthogonal to the observable controls. In that case, h(p, x) = g (p, x). All of our
results apply in either setup.
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normal demand. This will result in the incorrect prediction that higher prices are

associated with higher sales if this bias is sufficiently large.

Fortunately, the presence of instruments allows us to estimate an unbiased

ĥ(p, x) that captures the structural relationship between p and y. These are sets of

variables z that satisfy the following three conditions.

Relevance F(p|x,z) , F(p|x), the distribution of p given x and z, is not independent

of z. E.g, relevance requires that the airline change prices, p, in response to

changes in the fuel prices, z.

Exclusion z does not directly affect y—i.e., z ⊥⊥ y | (x, p,e); note that this is implied

by Equation (5.1). E.g, exclusion requires that none of the airline customers

consider the oil price when deciding whether to buy a ticket. This assumption

would be violated if the data included oil traders who might be more likely to

fly when fuel prices are high.

Unconfounded Instrument z ⊥⊥ e | x. The instrument, z is conditionally indepen-

dent of any unobserved confounder, e.5 This assumption rules out latent

factors that affect both the instrument and the response. COVID-19 would

represent a violation of this assumption because it reduced both fuel cost (via

lower oil prices) and demand for airline tickets.

Taking the expectation of both sides of Equation (5.1) conditional on [x,z],

applying the unconfounded instrument assumption and the definition of h (Equa-

tion (5.2)) establishes the relationship [cf. Newey and Powell, 2003]:

E[y|x,z] = E[ g (p, x)|x,z] +E[e|x]

=

∫
h (p, x)dF(p|x,z), (5.5)

5Under the additive confounder assumption made in Eq. (5.1), unconfoundedness of the instrument
is not necessary: we could replace this assumption with the weaker mean independence assumption
E[e|x,z] = 0 without changing anything that follows. We use the stronger assumption to facilitate
extensions, e.g. to estimating quantiles under interventions. Our assumption is similar to the ‘un-
confoundedness’ assumption in the Neyman–Rubin potential outcomes framework [Rosenbaum and
Rubin, 1983] (i.e. p ⊥⊥ e | x). But our assumption is weaker—in particular, we allow for p 6⊥⊥ e|x—and
so the matching and propensity-score re-weighting approaches often used in that literature will not
work here.
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where, again, dF(p|x,z) is the conditional treatment distribution. The relationship in

Equation (5.5) defines an inverse problem for h in terms of two directly observable

functions: E[y|x,z] and F(p|x,z). IV analysis typically splits this into two stages:

first estimating F̂(p|xt,zt) ≈ F(p|xt,zt), and then estimating ĥ using F̂.

Most existing approaches to IV analysis assume linear models for the treat-

ment density function F̂ and the counterfactual prediction function ĥ to solve

Equation (5.5) in closed form. For example, the two-stage least-squares (2SLS)

procedure [e.g., Angrist et al., 1996] posits y = γp + xβy + e and p = τz + xβp + v,

with the assumptions that E[e|x,z] = 0, E[v|x,z] = 0, and E[ev] , 0 (which implies

E[ep] , 0). This procedure is straightforward: fit a linear model for p given x and z

and use the predicted values p̂ in a second linear model of y. This is a statistically

efficient way to estimate the effect of the policy variable (i.e. γ) as long as two

strong assumptions hold: linearity (i.e., both first- and second-stage regressions are

correctly specified) and homogeneity (i.e., the policy affects all individuals in the

same way).6

Flexible nonparametric extensions of 2SLS either replace the linear regressions

with a linear projection onto a series of known basis functions [Newey and Powell,

2003; Blundell et al., 2007; Chen and Pouzo, 2012] or use kernel-based methods

as in Hall and Horowitz [2005] and Darolles et al. [2011]. This system of series

estimators is an effective strategy for introducing flexibility and heterogeneity with

low dimensional inputs, but the approach faces the same limitations as kernel

methods in general: their performance depends on the choice of kernel function; and

they often become computationally intractable in high-dimensional feature spaces

[x,z] or with large numbers of training examples.

5.4 Estimating and validating DeepIV
We now describe how to use deep networks to perform flexible, scalable IV analysis

in a framework we call DeepIV. We make two contributions that are each necessary

components of the approach. First, we propose a loss function and optimization

procedure that allows us to optimize deep networks to make valid predictions under

6The estimated γ̂ remains interpretable as a ‘local average treatment effect’ (LATE) under less
stringent assumptions [see Angrist et al., 1996, for an overview].
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interventions. Second, we describe a general procedure for out-of-sample validation

of two-stage instrument variable methods. This allows us to perform causally valid

hyperparameter optimization, which in general is necessary for achieving good

predictive performance using deep networks.

Our approach is conceptually simple given the inverse problem described above.

Rather than constraining ourselves to analytic solutions to the integral in Equa-

tion (5.5), we instead directly optimize our estimate of the structural equation, ĥ .

Specifically, to minimize `2 loss given n data points and given a function spaceH

(which may or may not include the true h ), we solve

min
ĥ∈H

n∑
t=1

(
yt −

∫
ĥ (p, xt)dF(p|xt,zt)

)2

. (5.6)

Since the treatment distribution is unknown, we estimate F̂(p|x,z) in a separate first

stage.

So the DeepIV procedure has two stages: a first stage density estimation proce-

dure to estimate F̂(p|x,z) and a second that optimizes the loss function described

in Equation (5.6). In both stages hyperparameters can be chosen to minimize the

respective loss functions on a held out validation set, and improvements in perfor-

mance against this metric will correlate with improvements on the true structural

loss which cannot be evaluated directly. We briefly discuss these two stages before

describing our methods for optimizing the loss given in Equation (5.6) and our

causal validation procedure.

First stage: Treatment network In the first stage we learn F(p|x,z) using an

appropriately chosen distribution parameterized by a deep neural network (DNN),

say F̂ = Fφ(p|x,z) where φ is the set of network parameters. Since we will be

integrating over Fφ in the second stage, we must fully specify this distribution.

In the case of discrete p, we model Fφ(p|x,z) as a categorical Cat (p | π(x,z;φ))

with P(p = pk) = πk(x,z;φ) for each treatment category pk and where πk(x,z;φ) is

given by a DNN with softmax output. For continuous treatment, we model F as a

mixture of Gaussian distributions where component weights πk(x,z;θ) and param-

eters
[
µk(x,z;φ),σk(x,z;φ)

]
form the final layer of a neural network parametrized
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by φ. This model is known as a mixture density network, as detailed in §5.6 of

Bishop [2006]. With enough mixture components it can approximate arbitrary

smooth densities. To obtain mixed continuous–discrete distributions we replace

some mixture components with point masses. In each case, fitting Fφ is a standard

supervised learning problem.

Second stage: Outcome network In the second stage, the conditional causal effect

h is approximated by a DNN with real-valued output, say hθ. We optimize network

parameters θ to minimize the integral loss function in Equation (5.6) over training

data D of size T = |D| from the joint DGPD,

L(D;θ) = |D|−1
∑

t

(
yt −

∫
hθ(p, xt)dF̂φ(p|xt,zt)

)2

. (5.7)

Note that this loss involves the estimated treatment distribution function, F̂φ, from

our first stage.7 Once this second stage network, hθ, is trained, we can discard

F̂φ(p|xt,zt) and simply use hθ as our predictor of E[y|do(p), x].

5.4.1 Optimization for DeepIV networks

We use stochastic gradient descent to train the network weights. For Fφ, standard

off-the-shelf methods apply, but second stage optimization (for hθ) needs to account

for the integral in Equation (5.7). SGD convergence only requires that each sampled

gradient ∇θLt is unbiased for the population gradient, ∇θL(D;θ). Lower variance

for ∇θLt will tend to yield faster convergence [Zinkevich, 2003] while the computa-

tional efficiency of SGD on large datasets requires limiting the number of operations

going into each gradient calculation [Bousquet and Bottou, 2008].

We can approximate the integral with respect to a probability measure with

the average of draws from the associated probability distribution:
∫

h(p)dF(p) ≈

B−1 ∑
b h(pb) for {pb}

B
1

iid
∼ F. Hence we can get an unbiased estimate of Equa-

tion (5.7) by replacing the integral with a sum over samples from our fitted treatment

7We can replace Eq. (5.7) with other functions, e.g., a softmax for categorical outcomes, but use
`2 loss for most of our exposition.
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distribution function, F̂φ:

L(D;θ) ≈ |D|−1
∑

t

yt −
1
B

∑
ṗ∼F̂φ(p|xt ,zt)

hθ(ṗ, xt)


2

=: L̂(D;θ). (5.8)

This equation can be used to estimate ∇θL with an important caveat: if we want to

maintain unbiased gradient estimates, independent samples must be used for each

instance of the integral in the gradient calculation. To see this, note that the gradient

of Equation (5.8) has expectation

ED∇θLt = −2ED
(
EFφ(p|xt ,zt)

[
yt −hθ(pk, xt)

]
·EFφ(p|xt ,zt)

[
h ′θ(pk, xt)

])
(5.9)

, −2EDEFφ(p|xt ,zt)
[(

yt −hθ(pk, xt)
)
h ′θ(pk, xt)

]
,

where the inequality holds so long as covFφ(p|xt ,zt)
[(

yt −hθ(pk, xt)
)
h ′θ(pk, xt)

]
, 0.

We thus need a gradient estimate based on unbiased MC estimates for each

EFφ(p|xt ,zt) term in Equation (5.9). We obtain such an estimate by taking two samples

{ ṗb}
B
1 , {p̈b}

B
1

iid
∼ Fφ(p|xt,zt) and calculating the gradient as

∇̂B
θLt ≡ −2

yt −B−1
∑

b

hθ( ṗb, xt)

B−1
∑

b

h ′θ( p̈b, xt). (5.10)

Independence of the two samples ensures that E∇̂B
θLt = ED∇θLt = ∇θL(D;θ), as

desired. The variance of our estimate depends on B, the number of samples that we

draw. Each of these samples is relatively expensive to compute because they require

a forward pass through the network ĥθ(ṗ, xt). If this varies significantly with ṗ we

might need a large number of samples to get a low-variance estimate of the gradient,

which is computationally intensive.

An alternative is to optimize an upper bound on Equation (5.8). By using

Jensen’s inequality and the fact that the squared error function is convex we get that

L̂(D;θ) ≤ |D|−1
∑

t

∑
ṗ∼F̂φ(p|xt ,zt)

(
yt −hθ(ṗ, xt)

)2
. (5.11)
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Taking the RHS of Equation (5.11) as the objective and calculating the gradient

leads to a version of Equation (5.10) in which a single draw can be used instead of

two independent draws. This objective is easy to implement in practice as it just

involves drawing samples during training. This is well supported in deep network

implementations because it is analogous to the data augmentation procedures that

are commonly used to encourage invariance in deep networks. The analogy is more

than just aesthetic—by optimizing this loss, we are essentially encouraging the

network to be invariant to variations in the treatment that cannot be explained by

our features and instrument. This encourages the network to ignore the effects of

unobserved confounding variables.

However, we do not have theoretical guarantees that optimizing this upper

bound on L(D;θ) leads to good predictions on the interventional distribution. While

it may converge more quickly because it exhibits lower variance, it will have worse

asymptotic performance as it only approximates the desired loss function. We

evaluated this tradeoff experimentally by comparing optimizing the upper bound to

the more computationally expensive unbiased procedure.

5.5 Experiments
We evaluated our approach on both simulated and real data. We used simulations

to assess DeepIV’s ability to recover an underlying structural equation both in

a low-dimensional domain with informative features and in a high-dimensional

domain with features consisting of pixels of a handwritten image. We compared

our approach to 2SLS and to a standard feed-forward network, evaluated the effec-

tiveness of hyperparameter optimization, and contrasted our biased and unbiased

loss functions with various numbers of samples underlying the SGD step. We also

considered a real-world dataset where ground truth was not available, showing that

we could replicate the findings of a previous study in a dramatically more automatic

fashion.

5.5.1 Simulations

Our simulation models a richer version of the airline example described in Sec-

tion 5.1. We assume that there are 7 customer types s ∈ {1, ...,7} that each ex-
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hibit different levels of price sensitivity. Each type is represented as a one-

hot vector ei, and its effect is just its integer sensitivity si = [1,2, ...,7] · ei. We

model the holiday effect on sales by letting the customer’s price sensitivity vary

continuously throughout the year according to a complex non-linear function,

ψt = 2
(
(t−5)4/600 + exp

[
−4(t−5)2

]
+ t/10−2

)
. The time of year t is an observed

variable, generated as t ∼ unif(0,10). Prices are a function of ψt and of the fuel

price z, with the motivation that they are chosen strategically by the airline in

order to move with average price sensitivity. In our example, the high demand

that results from conferences breaks the conditional independence between our

treatment variable p and the latent effects e, thereby violating the “unconfounded-

ness” assumption. We model this abstractly by generating our latent errors e with a

parameter ρ that allows us to smoothly vary the correlation between p and e. Sales

y are then generated as

y = 100 + (10 + p)sψt −2p + e, p = 25 + (z + 3)ψt + v

z, v ∼ N(0,1) and e ∼ N(ρv,1−ρ2).

Our target structural equation is h(t, s, p) = (10 + p)sψt −2p. To evaluate the

model, we consider the interventional question, “What would sales have been if

prices had been set to p′?” Thus the price in our test set is set deterministically over

a fixed grid of price values that spans the range of training set prices.

Low dimensional domain Our simulation models a richer version of the airline

example described in the introduction. We evaluated structural mean square error

(MSE) while varying both the number of training examples and ρ, the correlation

between e and p. In addition to Deep IV, we considered a regular feed-forward net-

work (FFNet) with the same architecture as our outcome network, a non-parametric

IV polynomial kernel regression [NonPar, Darolles et al., 2011] using Hayfield,

Racine, et al. [2008]’s R implementation, and two-stage least squares (2SLS).

The results are summarized in Figure 5.4. The performance of NonPar, of 2SLS,

and of our Deep IV model was mostly unaffected by changes in ρ, reflecting the

fact that these models are designed to be resilient to unobserved confounders. For

1000 data points, NonPar’s mean performance was better than 2SLS but failed to
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Figure 5.4: Out-of-sample predictive performance for different levels of cor-
relation, ρ, between the treatment p and unobserved confounder e. Note
that the test samples were generated with independent errors conditional
upon a fixed grid of price values, breaking this correlation that existed in
the training sample; this is why the feed-forward network did so poorly.
Each model was fitted on 40 random samples from the DGP for each
sample size and ρ-level.

match DeepIV. Because of NonPar’s excessive computational requirements we were

not able to fit it to the larger datasets. 2SLS is constrained by its homogeneity

and linearity assumptions, and so did not improve with increasing amounts of

data. Adding regularized polynomial basis functions to 2SLS (2SLS(poly)) gives

some empirical improvements in performance over 2SLS on larger datasets but the

procedure is not causally valid because it violates 2SLS’s linearity assumptions.

Both forms of 2SLS performed far better than FFNet which did a good job of

estimating h(t, s, p) +E[e|p] but a terrible job of recovering the true structural

equation. As ρ dropped, decreasing E[e|p], FFNet’s performance improved but

even with low levels of correlation between p and e it remained far worse than

simple 2SLS. This occurred because we evaluated the models with respect to a fixed

grid of treatment values which induced a covariate shift at test time. In contrast,

Deep IV was the best performing model throughout and its performance improved

as the amount of data grew.

High dimensional feature space In real applications, we do not typically get to

observe variables like customer type that cleanly delineate our training examples into

explicit classes, but may instead observe a large number of features that correlate
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Figure 5.5: For the high-dimensional feature space problem we used a four-
layer convolutional network to build an embedding of the image features
which was concatenated with the observed time features and the instru-
ment (first stage) and the treatment samples (second stage) and fed the
resulting vector through another hidden layer before the output layer.
(Left) Grid search over L2 and dropout parameters for the embedding
used in the convolution network. (Right) Performance on an image
experiment.

with such types. To simulate this, we replaced the customer type label s ∈ {0,1, ...,6}

with the pixels of the corresponding handwritten digit from the MNIST dataset

[LeCun and Cortes, 2010]. The task remained the same, but the model was no

longer explicitly told that there were 7 customer types and instead had to infer the

relationship between the image data and the outcome.

In this far more challenging domain, performance is sensitive to the choice

of hyperparameters, necessitating optimization on a validation set. Figure 5.5

shows an evaluation of the appropriateness of our loss function for hyperparameter

tuning, comparing our validation-set loss after grid search over Dropout and L2-

regularization parameters to test set loss. We found a clear linear relationship

between the losses; the best performing validation set model was among the best

five performing models under the true causal loss.
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We can get an upper bound on the performance of a particular model architec-

ture by comparing its performance to the same architecture trained on data from a

simulated randomized experiment on the same data-generating process. We simu-

lated this by generating the outcome y with independent noise e and by generating

p uniformly at random over its support. Thus the controlled model had to solve a

standard supervised learning problem where errors were generated independently

and there was no test-time covariate shift. As before, the naive deep network also

shared the same architecture in addition to taking the instrument as input. This

experiment showed that DeepIV was able to make up most of the loss in estimating

the causal effect that the naive network suffered by not accounting for the causal

prediction problem. However, there was still a gap in performance: with 20 000

data points the controlled experiment achieved an average mean squared error of

0.20 while DeepIV managed 0.32.

5.5.2 Application: Search-advertisement position effects

Our experiments so far have considered synthetic data. We now evaluate the utility

of our approach on real data for which we do not have access to ground truth. This

means that we cannot evaluate models in terms of their predictions; instead, we show

that we can replicate the results of a previously published study in a dramatically

more automated fashion. Specifically, we examine how advertiser’s position on the

Bing search page (their “slot”) affects the probability of a user click, allowing for

different treatment effects for different advertiser-query pairs. For example, we aim

to detect differences in the importance of ad position when Coke bids on the word

“Coke” (an “on-brand query”) versus when Pepsi bids on “Coke” (an “off-brand

query”) versus when Coke bids on “www.coke.com” (an “on-nav query”, occurring

when a user types a url in the search box by mistake) versus when Pepsi bids on

“www.coke.com” (an “off-nav query”). This question was studied by Goldman and

Rao [2014] using a nonparametric IV estimation approach that involved a detailed

construction of optimal instruments, as well as a separate hand-coded classification

of advertiser–query pairs into the four categories above.

Our goal is to replicate these results in an automated fashion. Advertiser position

is correlated with latent user intent (e.g. when a user searches for “Coke”, it is likely
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Figure 5.6: The inter-quartile range in advertiser-query specific estimates of
the relative drop in click rate from moving from position 1 to position 2
(i.e. y-axis denotes cr1−cr2

cr1
%), as the popularity of the advertiser varies

along the x-axis (as measured by visit rank on Alexa.com), for on-brand
versus off-brand queries (left panel) and on-nav versus off-nav queries
(right panel) for a single combination of advertiser and search-query text.

both that they will click and that “Coke” will be the top advertiser), so we need

instruments to infer causation. The instruments proposed by Goldman and Rao

[2014] are a series of indicators for experiments run by Bing in which advertiser–

query pairs were randomly assigned to different algorithms that in turn scored

advertisers differently in search auctions, resulting in random variation in position.

Our estimation algorithm takes the experiment ID directly as an instrument.

As features, we gave the deep nets the query url and user query as text. The

url was parsed into tokens on dashes and dots and these tokens were then parsed

on punctuation and whitespace. Given the outcome variable (an indicator for user

click), the features, and the instruments, we applied our methodology directly

to the data without any of the additional feature engineering and construction of

optimal instruments performed by Goldman and Rao [2014]. This approach was

tractable despite the fact that the dataset contained over 20 million observations.

Figure 5.6 shows the results. We were able to replicate the original study’s broad

findings, namely that (i) that for “on-brand” queries, position was worth more to

small websites; and (ii) that the value of position for on-nav queries was much

smaller than for off-nav queries. A naive non-causal regression found an unrealistic
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average treatment effect (ATE; across sampled advertisers and queries) drop in click

rate of 70% from 1st to 2nd position; in contrast, the causal estimate of the ATE

was a more modest 12% drop.

5.6 Discussion
We have presented DeepIV, an approach that leverages instrument variables to train

deep networks that directly estimate causal effects and validate the resulting models

on held-out data. DeepIV significantly reduced error under interventions measured

in simulation experiments and was able to replicate previous IV experiments without

extensive feature engineering. In future work, we plan to discuss interference

techniques for the DeepIV framework and explore how this approach generalizes to

other causal graphs given appropriate assumptions.
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Chapter 6

Valid Causal Inference with
(Some) Invalid Instruments

This chapter develops a method to weaken instrumental variable assumptions that

are required by the estimation procedure that we introduced in Chapter 5. We show

that in settings with more than two candidate instruments, valid inference is possible

under agreement assumptions that do not require that all the candidates are valid.

6.1 Introduction
As we demonstrated Chapter 5, instrumental variable (IV) methods are a powerful

approach for estimating treatment effects: they are robust to unobserved confounders

and they are compatible with a variety of flexible nonlinear function approximators

[see e.g. Newey and Powell, 2003; Darolles et al., 2011; Hartford et al., 2017;

Bennett et al., 2019; Singh et al., 2019], thereby allowing nonlinear estimation

of heterogeneous treatment effects. Recall that in order to use an IV approach,

one must make three assumptions which we described in detail in Section 5.3

on page 74. The first, relevance, asserts that the treatment is not independent of

the instrument. This assumption is relatively unproblematic, because it can be

verified with data. The second assumption, unconfounded instrument, asserts that

the instrument and outcome do not share any common causes. This assumption

cannot be verified directly, but in some cases it can be justified via knowledge

86



of the system; e.g. the instrument may be explicitly randomized or may be the

result of some well understood random process. The final assumption, exclusion,

asserts that the instrument’s effect on the outcome is entirely mediated through the

treatment. This assumption is even more problematic; not only can it not be verified

directly, but it can be very difficult to rule out the possibility of direct effects between

the instrument and the outcome variable. Indeed, there are prominent cases where

purported instruments have been called into question for this reason. For example, in

economics, the widely used “judge fixed effects” research design [Kling, 2006] uses

random assignment of trial judges as instruments and leverages differences between

different judges’ propensities to incarcerate to infer the effect of incarceration on

some economic outcome of interest [see Frandsen et al., 2019, for many recent

examples]. Mueller-Smith [2015] points out that exclusion is violated if judges also

hand out other forms of punishment (e.g. fines, a stern verbal warning etc.) that

are not observed. Similarly, in genetic epidemiology “Mendelian randomization”

[Davey Smith and Ebrahim, 2003] uses genetic variation as instruments to study

the effects of some exposure on an outcome of interest. For example, given genetic

markers that are known to be associated with a higher body mass index (BMI),

we can estimate the effect of BMI on cardiovascular disease if we are prepared

to assume that these genes only affect cardiovascular disease via their affect on

BMI. This assumption fails it is possible that the same genetic markers influence

the risk of cardiovascular disease via some other pathway. The possibility of such

“direct effects”—referred to as “horizontal pleiotropy” in the genetic epidemiology

literature—is regarded as a key challenge for Mendelian randomization [Hemani

et al., 2018].

It is sometimes possible to identify many candidate instruments, each of which

satisfies the relevance assumption; in such settings, demonstrating exclusion is

usually the key challenge, though in principle unconfounded instrument could also

be a challenge. For example, many such candidate instruments can be obtained in

both the judge fixed effects and Mendelian randomization settings, where individual

judges and genetic markers, respectively, are treated as different instruments. Rather

than asking the modeler to gamble by choosing a single candidate about which

to assert these untestable assumptions, this chapter advocates making a weaker

assumption about the whole set of candidates. Most intuitively, we can assume
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majority validity: that at least a majority of the candidate instruments satisfy all

three assumptions, even if we do not know which candidates are valid and which are

invalid. Or we can go further and make the still weaker assumption of modal validity:

that the modal relationship between instruments and response is valid. Observe that

modal validity is a weaker condition because if a majority of candidate instruments

are valid, the modal candidate–response relationship must be characterized by these

valid instruments. Modal validity is satisfied if, as Tolstoy might have said, “All

happy instruments are alike; each unhappy instrument is unhappy in its own way.”

This chapter introduces ModeIV, a robust instrumental variable technique. Mod-

eIV allows the estimation of nonlinear causal effects and lets us estimate condi-

tional average treatment effects that vary with observed covariates. It is simple to

implement—it involves fitting an ensemble with a modal aggregation function—and

is black-box in the sense that it is compatible with any valid IV estimator, which al-

lows it to leverage any of the recent machine learning-based IV estimators. Despite

its simplicity, ModeIV has strong asymptotic guarantees: we show consistency and

that even on a worst-case distribution, it converges point-wise to an oracle solution

at the same rate as the underlying estimators. We experimentally validated ModeIV

using both a modified version of the demand simulation from Section 5.5.1 and

a more realistic Mendelian randomization example modified from Hartwig et al.

[2017]. In both settings—even with data with a very low signal-to-noise ratio—we

observed ModeIV to be robust to exclusion-restriction bias and accurately recovered

conditional average treatment effects.

6.2 Related work

Inference with invalid instruments in linear settings Much of the work on valid

inference with invalid instruments is in the Mendelian randomization literature,

where violations of the exclusion restriction are common. For a recent survey,

see Hemani et al. [2018]. There are two broad approaches to valid inference in

the presence of bias introduced by invalid instruments: averaging over the bias,

or eliminating the bias with ideas from robust statistics. In the first setting, valid

inference is possible under the assumption that each instrument introduces a random

88



bias, but that the mean of this process is zero (although this assumption can be

relaxed [c.f. Bowden et al., 2015; Kolesár et al., 2015]). Then, the bias tends to

zero as the number of instruments grow. Methods in this first broad class have the

attractive property that they remain valid even if none of the instruments is valid,

but they rely on strong assumptions that do not easily generalize to the nonlinear

setting considered in this paper.

The second class of approaches to valid inference assumes that some fraction of

the instruments are valid and then uses the fact that biased instruments are outliers

whose effect can be removed by leveraging robust estimators. For example, by

assuming majority validity and constant linear treatment effects1, Kang et al. [2016]

and Guo et al. [2018] show that it is possible to consistently estimate the treatment

effect via a Lasso-style estimator that uses the sparsity of the `1 norm to remove

invalid instruments. Under the same linearity and constant effect assumptions,

Hartwig et al. [2017] showed that one can estimate the treatment effect under modal

validity by estimating the mode of a set of Wald estimators. In this paper, we

use the same modal insight as Hartwig et al., but generalize the approach to a

nonlinear setting, thereby removing the strong assumption of constant treatment

effects. Finally, Kuang et al. [2020] recently showed that, under majority validity, it

is possible to leverage structure learning techniques produce a “summary (valid) IV”

that can be plugged into downstream estimators. They focus on a setting with binary

instruments, responses and confounders whereas we aim for a generic method that

places no constraints on the data generating process beyond those necessary for

identification.

Ensemble models Ensembles are widely used in machine learning as a technique

for improving prediction performance by reducing variance [Breiman, 1996] and

combining the predictions of weak learners trained on non-uniformly sampled

data [Freund and Schapire, 1995]. These ensemble methods frequently use modal

predictions via majority voting among classifiers, but they are designed to reduce

variance. Both the median and mode of an ensemble of models have been explored

as a way of improve robustness to outliers in the forecasting literature [Stock and

1That is, assuming that the true structural equation is some linear function of the treatment and
invalid instruments, and that all units share the same treatment effect parameter, β.
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Watson, 2004; Kourentzes et al., 2014], but we are not aware of any prior work that

explicitly uses these aggregation techniques to eliminate bias from an ensemble.

Mode estimation If a distribution admits a density, the mode is defined as the

global maximum of the density function. More generally, the mode can be defined

as the limit of a sequence of modal intervals—intervals of width h that contains the

largest proportion of probability mass—such that xmode = limh→0 argmaxx F([x−

h/2, x + h/2]). These two definitions suggest two estimation methods for estimating

the mode from samples: either one may try to estimate the density function and the

maximize the estimated function [Parzen, 1962], or one might search for midpoints

of modal intervals from the empirical distribution functions. To find modal intervals,

one can either fix an interval width, h, and choose x to maximize the number of

samples within the modal interval [Chernoff, 1964], or one can solve the dual

problem by fixing the target number of samples to fall into the modal interval and

minimizing h [Dalenius, 1965; Venter, 1967]. We use this latter Dalenius–Venter

approach as the target number of samples can be parameterized by the number of

valid instruments, thereby avoiding the need to select a kernel bandwidth h.

6.3 ModeIV
In this paper, we assume we have access to a set of k candidate variables,

Z = {z1, . . . ,zk}, which are ‘valid’ instrumental variables if they satisfy relevance,

exclusion and unconfounded instrument, and are ‘invalid’ otherwise. Denote the

set of valid instruments,V := {zi : zi 6⊥ t, zi ⊥ ε, zi ⊥ y|x, t, ε}, and the set of invalid

instruments, I =Z\V. We further assume that each valid instrument identifies the

causal effect. In the additive confounder setting, this amounts to assuming that the

unobserved confounder’s effect on y is additive, such that y = f (t, x,zi:i∈I) + ε for

some function f and E[y|x,zi:i, j,z j] =
∫

f (t, x,zi:i, j)dF(t|x,zi:i, j,z j) has a the same

unique solution for all j inV.

The ModeIV procedure requires the analyst to specify a lower bound V ≥ 2 on

the number of valid instruments and then proceeds in three steps.

1. Fit an ensemble of k estimates of the conditional outcome { f̂1, . . . , f̂k} using

a non-linear IV procedure applied to each of the k instruments. Each f̂ is a
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function mapping treatment t and covariates x to an estimate of the effect of

the treatment conditional on x.

2. For a given test point (t, x), select [l̂, û] as the smallest interval containing V of

the estimates { f̂1(t, x), . . . , f̂k(t, x)}. Define Îmode = {i : l̂ ≤ f̂i(t, x) ≤ û} to be the

indices of the instruments corresponding to estimates falling in the interval.

3. Return f̂mode(t, x) = 1
|Îmode |

∑
i∈Îmode

f̂i(t, x)

Figure 6.1 shows this procedure graphically. The idea is that the estimates

from the valid instruments will tend to cluster around the true value of the effect,

E[y|do(t), x]. We assume that the most common effect is a valid one; i.e., that the

modal effect is valid. To estimate the mode, we look for the tightest cluster of points

which, by definition, are the points contained in Îmode. Intuitively, each estimate

in this interval should be approximately valid and hence approximates the modal

effect. Finally, we average these estimates to reduce variance.

The next theorem formalizes this intuition by showing that ModeIV asymptoti-

cally identifies and consistently estimates the causal effect.

Theorem 5. Fix a test point (t, x) and let β̂1, . . . , β̂k be estimators of the causal effect

of t at x corresponding to k (possibly invalid) instruments. E.g., β̂ j = f̂ j(t, x). Denote

the true effect as β = E[y|do(t), x]. Suppose that

1. (consistent estimators) β̂ j→ β j almost surely for each instrument. In particu-

lar, β j = β whenever the jth instrument is valid.

2. (modal validity) At least v of the instruments are valid, and no more than v−1

of the invalid instruments agree on an effect. That is, v of the instruments

yield the same estimand if and only if all of those instruments are valid.

Let [l̂, û] be the smallest interval containing v of the instruments and let Îmode = {i :

l̂ ≤ β̂i ≤ û}. Then, ∑
i∈Îmode

ŵiβ̂i→ β

almost surely, where ŵi,wi are any non-negative set of weights such that each

ŵi→ wi a.s. and
∑

i∈Îmode
wi = 1.
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Figure 6.1: Example of the ModeIV algorithm with 7 candidates (4 valid and
3 invalid) from the biased demand simulation (see Section 6.4.1). The 7
estimators shown in the plot are each trained with a different candidate,
and at every test point t, the mode of the 7 predictions is computed
point-wise. The region highlighted in green contains the 3 predictions
that formed part of the modal interval for each given input. The ModeIV
prediction—the mean of the 3 closest prediction—is shown in solid
green.

We defer all proofs to the Section C of the supplementary material.

Of course, the ModeIV procedure can be generalized to allow estimators of

the mode that are different from the one used in Steps 2 and 3. The key advantage

of the Dalenius–Venter modal estimator is that the optimal choice for its only

hyper-parameter, V , does not depend on the distribution of the estimators at a given

test point. By contrast, kernel density-based modal estimators require tuning a

length-scale parameter, where the optimal choice may vary as a function of the test

point, (t, x). It is also straightforward to implement and relatively insensitive to the

choice of V . The procedure as a whole is, however, k times more computationally

expensive than running single estimation procedure at both training and test time.
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Despite its simplicity, ModeIV has strong point-wise worst-case guarantees.

Theorem 6 shows that if each estimate is bounded,2 then even in the worst case

where v−1 invalid candidates all agree on an effect, ModeIV converges at the same

rate as the underlying estimators to the solution of an oracle that uniformly averages

the valid instruments. In particular, if the estimators achieve the parametric rate,

1/
√

n, in the number of instances n, then ModeIV also converges at 1/
√

n.

Theorem 6. For some test point (t, x), let Z = {β̂1, . . . , β̂k} be k estimates of the

causal effect of t at x. Assume,

[Bounded estimates] Each estimate is bounded by some constants, [ai,bi]

[Convergent estimators] Each estimator converges in mean squared error at a

rate n−r (where r = 1
2 if the estimator achieves the parametric rate), and hence each

estimator has finite variance, Var(β̂i) =
σi

n−2r for some σi.

Then, if σ = maxi∈Vσi there exists a, C, such that E[(ModeIV(Z) − β)2 −

( 1
v
∑

i∈V β̂i−β)2] ≤ 9kCσn−r.

6.4 Experiments
We studied ModeIV empirically in two simulation settings. First, we investigated

the performance of ModeIV for non-linear effect estimation as the proportion of

invalid instruments increased for various amounts of direct effect bias. Second, we

applied ModeIV to a realistic Mendelian randomization (MR) simulation to estimate

heterogeneous treatment effects. For all experiments, we use DeepIV [Hartford

et al., 2017] as the nonlinear estimator. The existing methods for addressing bias

from invalid instruments are designed for the linear setting, so as baselines we

compare to DeepIV with oracle access to the set of valid instruments (DeepIV-opt);

the ensemble mean (Mean) which tests whether any performance improvements that

we observe are driven by variance reduction from ensembling; and a naive approach

that fits a single instance of DeepIV treating all instruments as valid (DeepIV-all).

For the MR experiments we also compare to Guo et al. [2018]. The heterogeneous

effects in our MR simulation violates Guo et al.’s linearity assumption, but their

2Boundedness is benign as long as we are not extrapolating too far outside of the range of data we
observe: standard estimators do not typically make predictions for E[y|do(t), x] outside of the range
[mini yi,maxi yi] of observed yi’s.
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method is designed with MR in mind so the comparison illustrates the effect of

incorrectly assuming linearity in this setting. In Section C.7 of the appendix, we

also evaluated the performance of ModeIV when the true effect is linear on Guo

et al.’s MR data generating process; we found that as long as a large enough sample

is used, it accurately recovered the true effect.

6.4.1 Biased demand simulation

We evaluated the effect of invalid instruments on estimation by modifying the low

dimensional demand simulation from Chapter 5.5.1 to include multiple candidate

instruments. The original demand simulation models a scenario where the treatment

effect varies as a function, ψ, of time, x0, and other observed covariates x.

z1:k, ν ∼ N(0,1) x0 ∼ unif(0,10) e ∼ N(ρν,1−ρ2),

t = 25 + (zTβ(zt) + 3)ψ(x0) + ν

y = 100 + 10xT
1:dβ

(x)ψ(x0) + (xT
1:dβ

(x)ψ(x0)−2)︸                ︷︷                ︸
Treatment effect

t

+ γ sin(zTβ(zy))︸         ︷︷         ︸
Exclusion violation

+e

We highlight the differences between this data generating process and the original in

red: here we have k instruments whose effect on the treatment is parameterized by

β(zt), instead of a single instrument in the original; we include an exclusion violation

term which introduces bias into standard IV approaches whenever γ is non-zero.

The vector β(zy) controls the direct effect of each instrument: invalid instruments

have nonzero β(zy)
i coefficients, while valid instrument coefficients are zero.

We fitted an ensemble of k different DeepIV models that were each trained with

a different instrument zi. In Figure 6.2, we compare the performance of ModeIV

with three baselines: DeepIV with oracle access to the set of valid instruments

(DeepIV-opt); the ensemble mean (Mean); and a naive approach that fit a single

instance of DeepIV treating all instruments as valid (DeepIV-all). The x-axis of the

plots indicates the scaling factor γ, which scales the amount of bias introduced via

violations of the exclusion restriction.
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Figure 6.2: Performance on the biased demand simulation for various numbers
of invalid instruments. The x-axis shows, γ, the scaling factor that scales
the amount of exclusion violation bias.

All methods performed well when all the instruments were valid. Once the

methods had to contend with invalid instruments, Mean and DeepIV-all performed

significantly worse than ModeIV because of both methods’ sensitivity to the biased

instruments. ModeIV’s mean squared error closely tracked that of the oracle method

as the number of biased instruments increased, and the raw mean squared errors of

both methods also increased as the number of valid instruments in the respective

ensembles correspondingly fell.

Sensitivity When using ModeIV, one key practical question that an analyst faces

is choosing V , the lower bound on the number of valid instruments. We evaluated

the importance of this choice in Figure 6.3 by testing the performance of ModeIV

across the full range of choices for V with different numbers of biased instruments.

We found that, as expected, the best performance was achieved when V equaled

the true number of valid instruments, but also that similar levels of performance

could be achieved with more conservative choices of V . That said, with only 5 valid

instruments, ModeIV tended to perform worse when V was set too small. For an

illustration of why this occurs, consider Figure 6.1 which visualizes the ModeIV

procedure. In the figure, there are a number of regions of the input space where

the invalid instruments agreed by chance (e.g. t ∈ [−1,0.]), so these regions bias

ModeIV for small mode set sizes. Overall, we observed that setting V = bk/2c

(where k is the number of instruments) tended to work well in practice.
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Figure 6.3: ModeIV’s sensitivity to the choice of number of valid instruments
parameter V . Best performance is achieved when V is equal to the true
number of valid instruments, but the method is relatively insensitive to
more conservative choices of V .

Asymptotically, ModeIV remains consistent when fewer than half of the instru-

ments are valid, but when this is the case there are far more ways that Assumption

2 of Theorem 5 can be violated. This is illustrated in Figure 6.1 which shows that

there are a number of regions where the bias instruments agree by chance. Because

of this, we recommend only using ModeIV when one can assume that the majority

of instruments are valid, unless one has prior knowledge to justify modal validity

without assuming the majority of instruments are valid3.

Bootstrap inference When using deep learning-based estimators, one typically

does not have closed form expressions for confidence intervals or knowledge of the

joint distribution over estimators, so we evaluated the performance of ModeIV with

bootstrap confidence intervals. Table 6.1 summarizes the results. On this simulation

we found that bootstrap confidence intervals with ModeIV were reasonably accurate

as long as V was set low enough: with V = 2 or 3, coverage was above 90% for 95%

confidence intervals. With larger settings of V , we found worse performance as the

narrower intervals did not account for occasional selection of biased instruments.

Figure 6.4 shows a plot of the bootstrap confidence intervals for both the average

dose-response curve and various conditional averages. The intervals are narrow

3For example, if direct effects are strictly monotone and disagree, chance agreements among
invalid instruments can only occur in a finite number of locations.

96



−5.0 −2.5 0.0 2.5

Treatment

−3

−2

−1

0

1

2
R

e
sp

o
n
se

−5.0 −2.5 0.0 2.5

Treatment (t = 2.5)

−5.0 −2.5 0.0 2.5

Treatment (t = 5.0)

−5.0 −2.5 0.0 2.5

Treatment (t = 7.5)

Target

ModeIV

Figure 6.4: Bootstrap 95% confidence interval for the (conditional) dose-
response curve of ModeIV with V = 3 for the biased demand simulation.
The left plot shows the unconditional curve, and the remaining three
curves are conditioned on the time variable, t ∈ {2.5,5,7.5}.

enough that they are able to indicate the true dose-response curve, while still

providing reasonable coverage.

4/7 valid 5/7 valid 6/7 valid

ModeIV-2 90.26% 94.79% 94.27%
ModeIV-3 87.82% 92.13% 92.79%
ModeIV-4 85.30% 90.10% 91.16%
ModeIV-5 72.80% 85.88% 88.06%
ModeIV-6 51.87% 70.63% 83.80%
ModeIV-7 34.12% 45.05% 66.44%
DeepIV-All 16.85% 18.48% 19.89%
DeepIV-Opt 95.07% 95.85% 95.79%
Ens-Mean 34.37% 45.29% 66.65%

Table 6.1: Empirical average point-wise coverage for bootstrap 95% confi-
dence intervals on the biased demand simulation with 7 instruments.

6.4.2 Mendelian randomization simulation

For the second experiment, we evaluated our approach on simulated data adapted

from Hartwig et al. [2017], which is designed to reflect violations of the exclusion

restriction in Mendelian randomization studies.

Instruments, zi, represent SNPs—locations in the genetic sequence where there

is frequent variation among people—modeled as random variables drawn from a
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Binomial(2, pi) distribution corresponding to the frequency with which an individ-

ual gets one or both rare genetic variants. The treatment and response are both

continuous functions of the instruments with Gaussian error terms. The strength of

the instrument’s effect on the treatment, αi, and direct effect on the response, δi, are

both drawn from Uniform(0.01,0.2) distributions for all i. For all experiments we

used 100 candidate instruments and varied the number of valid instruments from 50

to 100 in increments of 10; we set δi to 0 for all valid instruments. More formally,

zi ∼ Binomial(2, pi) β(x) := round(xTγ(xt),0.1).

t :=
K∑

j=1

α jz j +ρu + εx, y := β(x)t +

K∑
j=1

δ jz j + u + εy

In the original Hartwig et al. simulation, the treatment effect β was fixed for all

individuals. Here, we make the treatment effect vary as a function of observable char-

acteristics to model a scenario where treatments may affect different sub-populations

differently. We simulate this by making the treatment effect, β(x), a sparse linear

function of observable characteristics, x ∈ R10, where 3 of the 10 coefficients, γ(xt)
i

were sampled from U(0.2,0.5) and the remaining γ(xt)
i were set to 0. We introduce

non-linearity by rounding to the nearest 0.1, which makes the learning problem

harder, while making it easier to visually show differences between the fitted func-

tions and their targets.

Mendelian randomization problems tend to have low signal-to-noise ratios

because typical response variables tend to be influenced by a large number of unob-

served factors; in this simulation, the treatment explains only 1-3% of the response

variance. This makes the setting challenging for neural networks, which tend to

perform best on low-noise regimes.To address this, we leveraged the inductive

bias that the data is conditionally linear in the treatment effect, by using a neural

network to parameterize the slope of the treatment variable rather than outputting

the response directly. So, for these problems, we defined f̂ (t, x) = g(φ(x))t + h(φ(x)),

where g(·) and h(·) are linear layers that act on a shared representation φ(x).

Among the DeepIV-based benchmarks, the general trends that we observed on

the Mendelian randomization simulation—summarized in Table 6.2—were similar

to those we observed in the biased demand simulation: DeepIV-all performed poorly
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and ModeIV closely tracked the performance of our oracle, DeepIV-opt. On this

simulation the mean ensemble (Mean) achieved stronger performance, but still did

not match ModeIV.

Aside from the heterogeneity induced by β(x), this data generating process

is linear so we can use it to evaluate the effect of heterogeneity on methods that

assume a constant linear treatment effect. Guo et al.’s Two-Stage Hard Thresholding

(TSHT) accurately recovered the average treatment effect (ATE) on this problem

(see Table C.3 in the appendix), but as Table 6.2 shows, it was not able to match the

performance of ModeIV in predicting E[y|do(t), x]. Note that this is a challenging

baseline: with the sample size used in this simulation (400 000), Guo et al.’s method

has very few false positives in identifying the valid instruments (see Table C.3 in

the appendix), so it is essentially running two-stage least squares on a linear model

with a ‘random’ (from the perspective of the model) coefficient β(x). Linear models

are optimal in this setting, so ModeIV can only outperform TSHT by leveraging

the interaction between x and β. That said, there is a trade-off: TSHT was unbiased

in predicting the ATE, but both DeepIV-Opt and ModeIV picked up some bias:

DeepIV-Opt over-estimated the conditional average treatment effect by 0.035 and

ModeIV by 0.045 for true effect sizes that range between -0.3 and 0.3 (see Table

C.1 in the appendix). This bias is small but significant, and is also reflected in lower

coverage from bootstrap confidence intervals. We found that when targeting a 90%

confidence interval, DeepIV-Opt achieved only 80% coverage and ModeIV only

managed 60% (Table C.2 in the appendix).

Conditional average treatment effects and bootstrap inference Figure 6.5 shows

the predicted dose–response curves for a variety of different levels of the true

treatment effect. The six plots correspond to six different subspaces of x that all

have the same true conditional treatment effect. Each of the light blue lines shows

ModeIV’s prediction for a different value of x. The model is not told that the true β

is constant for each of these sub-regions, but instead has to learn that from data so

there is some variation in the slope of each prediction. Despite this, the majority of

predicted curves match the sign of the treatment effect for each subgroup of x and

accurately predicted the relative differences between the subgroups.
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Model 50% valid 60% valid 70% valid 80% valid 90% valid 100% valid

DeepIV (valid) 0.035 ± (0.001) 0.035 ± (0.001) 0.034 ± (0.001) 0.034 ± (0.001) 0.032 ± (0.0) 0.024 ± (0.001)

MODE-IV 30% 0.037 ± (0.001) 0.037 ± (0.001) 0.038 ± (0.001) 0.039 ± (0.001) 0.041 ± (0.001) 0.032 ± (0.001)

MODE-IV 50% 0.037 ± (0.001) 0.037 ± (0.001) 0.038 ± (0.001) 0.039 ± (0.001) 0.04 ± (0.001) 0.032 ± (0.001)

Mean 0.041 ± (0.001) 0.041 ± (0.001) 0.043 ± (0.001) 0.043 ± (0.001) 0.045 ± (0.001) 0.036 ± (0.001)

DeepIV (all) 0.099 ± (0.004) 0.116 ± (0.003) 0.149 ± (0.005) 0.149 ± (0.005) 0.142 ± (0.003) 0.025 ± (0.0)

TSHT 0.089 ± (0.005) 0.075 ± (0.003) 0.073 ± (0.003) 0.073 ± (0.003) 0.072 ± (0.003) 0.072 ± (0.003)

Table 6.2: Performance on the Mendelian randomization simulation for vari-
ous proportions of valid instruments. The ensemble methods performed
far better than the DeepIV model, which treated all instruments as valid,
and ModeIV, which gave significantly better performance than the mean
ensemble, was close to the performance of DeepIV on the valid instru-
ments.
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Figure 6.5: Estimated conditional dose–response curves for the Mendelian
randomization simulation. Each light blue curve shows ModeIV’s esti-
mate f (t, x) for some IID sample of x; each figure’s dark curve represents
the average over all samples of x. The plots show the different subsets of
the range, x, where true slope β(x) is (left to right) −0.2,−0.1, . . . , 0.3.

6.5 Discussion and Limitations
The conventional wisdom for IV analysis is: if you have many (strong) instruments

and sufficient data, you should use all of them so that your estimator can maximize

statistical efficiency by weighting the instruments appropriately. This remains true in

our setting—indeed, DeepIV trained on the valid instruments typically outperformed

any of the ensemble techniques—but of course requires a procedure for identifying

the set of valid instruments. In the absence of such a procedure, falsely assuming
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that all candidate instruments are valid can lead to large biases, as illustrated by

the poor performance of DeepIV-all. ModeIV gives up some efficiency by filtering

instruments, but it gains robustness to invalid instruments with strong worst case

asymptotic guarantees, and in practice we found that the loss of efficiency was

negligible. Of course, that empirical finding will vary across settings. A useful

future direction would find a procedure for recovering the set of valid instruments

to further reduce the efficiency trade-offs.

There are, however, some important settings where ModeIV will either not

work or require more careful assumptions. First, our key assumption was that

each valid instrument consistently estimates the same function, f (t, x). In settings

with discrete treatments, one typically only identifies a “(conditional) local average

treatment effect” (CLATE / LATE respectively) for each instrument. The LATE for

instrument i can be thought of as the average treatment effect for the sub-population

that changes its behavior in response to a change in the value of instrument i; if

the LATEs differ across instruments, this implies that each instrument will result

in a different estimate of E[ f̂i(t, x)] regardless of whether any of the instruments

are invalid. In such settings, ModeIV will return the average of the V closest

f̂i(t, x)’s, but one would need additional assumptions on how these estimates cluster

relative to biased estimates to apply any causal interpretation to this quantity. The

alternative is the approach that we take here: assume that a common function f (t, x)

is shared across all units and allow for heterogeneous treatment effects by allowing

the treatment effect to vary as a function of observed covariates x. This shared

heterogeneous effect assumption is weaker than the assumptions made in prior work

on robust IV, which requires a “constant effect” assumption that every individual

responds in exactly the same way to the treatment via a linear parameter, β.

Second, we assume that each of the valid instruments is unconfounded. This is

easiest to achieve in settings where each instrument is independent. ModeIV does

extend to settings where some instruments are confounded or all the instruments

share a common cause, but the conditions for valid inference are more delicate

because one has to ensure all backdoor paths between the instruments and response

are blocked. For example, if all the instruments share a common cause, u, then the

set of “valid” instruments is only valid if we control for the invalid candidates, such

that we block the path zvalid← u→ zinvalid→ y (see Appendix C.3).
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Appendix A

Deep Networks for Exchangeable
Arrays

A.1 Notation
• X ∈RN1×...×ND , the data tensor

• x ∈R
∏

i Ni , vectorized X, also denoted by vec(X).

• [N]: the sequence {n}n=1,...,N = (1,2, ...N)

• [N1 × ...×ND], the sequence {(n1, ...,nD)}n1∈[N1],...,nD∈[ND] of D-dimensional

tuples over N1× ...×ND

• n = (ni,n−i), an element of N1× ...×ND

• N =
∏

i Ni

• S(N), symmetric group of all permutations of N objects

• G(N) = {g(N)
i }i, a permutation group of N objects

• g(N)
i or G(N)

i , both can refer to the matrix form of the permutation g(N)
i ∈ G(N).

• g(N)
i (n) refers to the result of applying g(N)

i to n, for any n ∈ [N].
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• σ, an arbitrary, element-wise, strictly monotonic, nonlinear function such as

sigmoid.

A.2 Proofs
Proposition 7. Let g(N ) ∈ S(N ) be an “illegal” permutation of elements of the

tensor X – that is g(N ) < S(N1) ×S(N2) × ...×S(ND). Then there exists a dimension

i ∈ [D] such that, for some ni,n′i ,n−i,n′−i:

g(N )((ni,n−i)) = (n′i ,n−i), but

g(N )((ni,n′−i)) , (n′i ,n
′
−i).

A.2.1 Proof of Proposition 3

Proof. Let X ∈ RN1×...×ND be the data matrix. We prove the contrapositive by

induction on D, the dimension of X. Suppose that, for all i ∈ [D] and all ni,n′i ,n−i,n′−i,

we have that g(N )((ni,n−i)) = (n′i ,n−i) implies g(N )((ni,n′−i)) = (n′i ,n
′
−i). This means

that, for any n = (ni,n−i) = (n1, ...,ni, ...,nD) the action g(N ) takes on ni is independent

of the action g(N ) takes on n−i, the remaining dimensions. Thus we can write

g(N )(n) = g(Ni)(ni)×g(N /Ni)(n−i)

Where it is understood that the order of the group product is maintained (this is a

slight abuse of notation). If D = 2 (base case) we have g(N )((n1,n2)) = g(N1)(n1)×

g(N2)(n2). So g(N ) ∈ S(N1)×S(N2), and we are done. Otherwise, an inductive argu-

ment on g(N /Ni) allows us to write g(N )(n) = g(N1)(n1)× g(N2)(n2)× ...× g(ND)(nD).

And so g(N ) ∈ S(N1)×S(N2)× ...×S(ND), completing the proof. �

A.2.2 Proof of Proposition 4

Proof. First, observe that

g(N )(n) = n′ ⇐⇒
(
G(N ))

n′,n = 1
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Now, let i ∈ [D] be such that, for some ni,n′i ,n−i,n′−i we have

g(N )((ni,n−i)) = (n′i ,n−i), and

g(N )((ni,n′−i)) , (n′i ,n
′
−i).

Then by the observation above we have:

(
G(N ))

(n′i ,n−i),(ni,n−i) = 1, and(
G(N ))

(n′i ,n
′
−i),(ni,n′−i)

, 1.

And so:

(
G(N )W

)
(n′i ,n

′
−i),(ni,n−i) =

(
G(N ))

(n′i ,n
′
−i),∗

(
W

)
∗,(ni,n−i)

=
∑

k∈[N1×...×ND]

(
G(N ))

(n′i ,n
′
−i),k

(
W

)
k,(ni,n−i)

,W(ni,n′−i),(ni,n−i)

The last line follows from the observation above and the fact that G(N ) is a permuta-

tion matrix and so has only one 1 per row. Similarly,

(
WG(N ))

(n′i ,n
′
−i),(ni,n−i) =

(
W

)
(n′i ,n

′
−i),∗

(
G(N ))

∗,(ni,n−i)

=
∑

k∈[N1×...×ND]

(
W

)
(n′i ,n

′
−i),k

(
G(N ))

k,(ni,n−i)

=
(
W

)
(n′i ,n

′
−i),(n

′
i ,n−i)

Where again the last line follows from the above observation. Now, consider

W(ni,n′−i),(ni,n−i) and W(n′i ,n
′
−i),(n

′
i ,n−i). Observe that (ni,n′−i) differs from (ni,n−i) at ex-

actly the same indices that (n′i ,n
′
−i) differs from (n′i ,n−i). Let S ⊆ [D] be the set of

indices at which n−i differs from n′
−i. We therefore have

W(ni,n′−i),(ni,n−i) = W(n′i ,n
′
−i),(n

′
i ,n−i) = θS,

Which completes the proof. �

115



A.2.3 Proof of Theorem 2

Proof. We will prove both the forward and backward direction:

(⇐) Suppose W has the form given by (2.6). We must show the layer is only

equivariant with respect to permutations in S(N1)× ...×S(ND):

• Equivariance: Let g(N ) ∈ S(N1)× ...×S(ND), and let G(N ) be the correspond-

ing permutation matrix. Then a simple extension of Theorem 2.1 in [Ravan-

bakhsh et al., 2017] implies G(N )WX = WG(N )X for all X, and thus the layer

is equivariant. Intuitively, if g(N ) ∈ S(N1) × ...×S(ND) we can “decompose”

g(N )(n) into D permutations S(N1)(n1), ...,S(ND)(nD) which act independently

on the D dimensions of X.

• No equivariance wrt any other permutation: Let g(N ) ∈ S(N ), with g(N ) <

S(N1) × · · · × S(ND), and let G(N ) be the corresponding permutation matrix.

Using Propositions 3 and 4 we have:

G(N )W ,WG(N )

So there exists an index at which these two matrices differ, call it (n,n′). Then

if we take vec(X) to be the vector of all 0’s with a single 1 in position n′, we

will have:

G(N )W vec(X) ,WG(N ) vec(X).

And since σ is assumed to be strictly monotonic, we have:

σ(G(N )W vec(X)) , σ(WG(N ) vec(X)).

And finally, since G(N ) is a permutation matrix and σ is applied element-wise,

we have:

G(N )σ(W vec(X)) , σ(WG(N ) vec(X)).

Therefore, the layer σ(W vec(X)) is not a exchangeable tensor layer, and the

proof is completed.
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This proves the first direction.

(⇒) We prove the contrapositive. Suppose Wn,n′ , Wm,m′ for some

n,n′,m,m′ ∈ N1 × ... × ND with {i : ni = n′i} = {i : mi = m′i}. We want to

show that the layer Y = vec−1(σ(W vec(X))) is not equivariant to some permutation

g(N ) ∈ S(N1)× ...×S(ND). We define this permutation as follows:

g(N )(ν) =



m if ν = n

m′ if ν = n′

n if ν = m

n′ if ν = m′

ν otherwise

That is, g(N ) “swaps” n with m and n′ with m′. This is a valid permutation first

since it acts element-wise, but also since {i : ni = n′i} = {i : mi = m′i} implies that

n = n′ iff m = m′ (and so g(N ) is injective, and thus bijective). So if G(N ) is the

permutation matrix of g(N ) then we have (G(N ))(n′,n) = (G(N ))(m′,m) = 1, and:

(G(N )W)(m,n′) =
∑

k∈[N1×...×ND]

(G(N ))(m,k)W(k,n′)

= W(n,n′)

,W(m,m′)

=
∑

k∈[N1×...×ND]

W(m,k)(G(N ))(k,n′)

= (WG(N ))(m,n′)

And so G(N )W ,WG(N ) and by an argument identical to the above, with appro-

priate choice of X, this layer does not satisfy the requirements of an exchangeable

tensor layer. This completes the proof. �
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A.2.4 Proof of Theorem 1

A simple reparameterization allows us to write the matrix W of (2.6) in the form of

(2.3). Thus Theorem 1 is just the special case of Theorem 2 where D = 2 and the

proof follows from that.

A.3 Details of Architecture and Training
Self-Supervised Model. Details of architecture and training: we train a simple feed-

forward network with 9 exchangeable matrix layers using a leaky ReLU activation

function. Each hidden layer has 256 channels and we apply a channel-wise dropout

with probability 0.5 after the first to seventh layers. We found this channel-wise

dropout to be crucial to achieving good performance. Before the input layer we

mask out a proportion of the ratings be setting their values to 0 uniformly at random

with probability 0.15. We convert the input ratings to one-hot vectors and interpret

the model output as a probability distribution over potential rating levels. We tuned

hyper-parameters by training on 75% of the data, evaluating on a 5% validation

set. We test this model using the canonical u1.base/u1.test training/test split, which

reserves 20% of the ratings for testing. For the MovieLens-1M dataset, we use the

same architecture as for ML-100k and trained on 85% of the data, validating on

5%, and reserving 10% for testing. The limited size of GPU memory becomes an

issue for this larger dataset, so we had to employ conditional sampling for training.

At validation time we used full batch predictions using the CPU in order to avoid

memory issues.

Factorized Exchangeable Autoencoder Model. Details of architecture and

training: we use three exchangeable matrix layers for the encoder. The first two

have 220 channels, and the third layer maps the input to 100 features for each entry,

with no activation function applied. This is followed by mean pooling along both

dimensions of the input. Thus, each user and movie is encoded into a length 100

vector of real-valued latent features. The decoder uses five similar exchangeable

matrix layers, with the final layer having five channels. We apply a channel-wise

dropout with probability 0.5 after the third and fourth layers, which we again found

to be crucial for good performance. We convert the input ratings to one-hot vectors

and optimize using cross-entropy loss.
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Appendix B

Deep Learning for Predicting
Human Strategic Behaviour

B.1 Representing Behavioural Features
The architecture presented in Section 3.3 is sufficiently flexible to approximate most

of the known behavioural functions that appear in the behavioural game theory

literature. For completeness, we include explicit constructions here that how these

features can be approximated.

Proposition 8. An network with two exchangeable layers (of the form presented

in Section 3.3), one hidden unit per layer, max pooling units at every layer and

rectified linear unit activation functions can approximate min max regret, min min

unfairness, max min payoff, max max payoff, and max max efficiency.

Proof. By expanding the sums from the definition of the network, we see the first

hidden layer has the following functional form:

H(1,1) = relu(w1,rU(r) + w1,cU(c) + w1,rcU(r)
c + w1,rrU(r)

r + w1,ccU(c)
c + w1,crU(c)

r + b1,1).

where U(r) is the row player’s payoff matrix and U(r)
c is the row player’s payoff

matrix aggregated using the column-preserving pooling unit where we use the max

function to perform the aggregation. Similarly, the second hidden layer can be
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written as,

H(2,1) = relu(w2,1H(1,1) + w2,cH1,1
c + w2,rH(1,1)

r + b2,1).

We denote H(1,1) as the output of the first hidden layer and H(1,1)
c and H(1,1)

r are its

respective pooled outputs.

Game theoretic features can be interpreted as outputting a strategy (a distribution

over a player’s actions) given a description over the game. We express features in a

style similar to [Wright and Leyton-Brown, 2014] by outputting a vector f such that

fi ≈ 0 for all fi ∈ f if action i does not correspond to the target feature, and fi ≈ 1
l

where l is the number of actions that correspond to the target feature (with l = 1 if

the actions uniquely satisfies the feature ). Because features are all constructed from

a sparse subset of the parameters, we limit notational complexity by letting wi, j = 0

and bi, j = 0 for all i, j ∈ 1,2,r,c unless stated otherwise.

Max Max Payoff

Required: f maxmax(i) =


1
l if i ∈ argmaxi∈{1,...,m}max j∈{1,...,n} ui, j ui, j ∈ U(r)

0 otherwise
Let w1,r = 1,w2,r = c where c is some large positive constant and b1,1 = b where

is some scalar b ≥ mini, j U(r)
i, j and all other parameters wi, j,bi, j = 0. Then H(1,1)

reduces to,

H(1,1) = relu(U(r) + b) = U(r) + b since U(r) + b ≥ 0 by definition of b

H(2,1) = relu(cH(1,1)
r )⇒ h j,k = c(max

k
u j,k + b) ∀u j,k ∈ U(r), h j,k ∈H(2,1)

That is, all the elements in each row of H(2,1) equal an positive affine transformation

of the maximum element from the corresponding row in U(r).

f(1)
i = softmax(

n∑
k=1

h j,k) = softmax

 n∑
k=1

c(max
k

u j,k + b)

 = softmax
(
nc(max

k
u j,k + b)

)

Therefore, as c→∞, f(1)
i → f maxmax(i) as required.
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Max Min Payoff

Required: f maxmin(i) =


1
l if i ∈ argmaxi∈{1,...,m}min j∈{1,...,n} ui, j ui, j ∈ U(r)

0 otherwise
Max Min Payoff is derived similarly to Max Max except with w1,r = −1, and

b1,1 = b where b ≥maxi, j U(r)
i, j ; we keep w2,r = c as some large positive constant.

Then H(1,1) reduces to,

H(1,1) = relu(−U(r) + b) = −U(r) + b since −U(r) + b ≥ 0 by definition of b

H(2,1) = relu(cH(1,1)
r )⇒ h j,k = c(max

k
(−u j,k +b)) = c(min

k
u j,k +b) ∀u j,k ∈U(r), h j,k ∈H(2,1)

Since maxi−xi + b = mini xi + b. Thus,

f(1)
i = softmax(

n∑
k=1

h j,k) = softmax
(
nc(min

k
u j,k + b)

)

Therefore, as c→∞, f(1)
i → f maxmin(i) as required.

Max Max Efficiency

Required: f max max efficiency(i) =


1
l if i ∈ argmaxi∈{1,...,m}max j∈{1,...,n} u

(c)
i, j + u(r)

i, j

0 otherwise
Max Max Efficiency follow from the derivation of Max Max except with w1,r =

1,w1,c = 1,w2,r = c and b1,1 = b where b ≥mini, j(U(r)
i, j + U(r)

i, j ).

Following the same steps we get,

f(1)
i = softmax(

n∑
k=1

h j,k) = softmax

 n∑
k=1

c(max
k

(u(r) + u(c)) j,k + b)


= softmax

(
nc(max

k
(u(r) + u(c)) j,k + b)

)
= f max max efficiency(i) as c→∞
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Minimax Regret

Regret is defined as r(i, j) = maxi ui, j−ui, j ui, j ∈ U(r)

Required: f minimax regret(i) =


1
l if i ∈ argmini∈{1,...,m}max j∈{1,...,n} r(i, j)

0 otherwise
Let w1,rc = 1, w1,r = −1, and b1,1 = 0; we keep w2,r = c as some large positive

constant.

Then H(1,1) reduces to,

H(1,1) = relu(U(r)
c −U(r)) = U(r)

c −U(r) since U(r)
c ≥ U(r) by definition of U(r)

c

H(2,1) = relu(cH(1,1)
r )⇒ h j,k = c(max

k
(max

j
u j,k −u j,k)) ∀u j,k ∈ U(r), h j,k ∈H(2,1)

Thus,

f(1)
i = softmax(

n∑
k=1

h j,k) = softmax
(
nc(max

k
(max

j
u j,k −u j,k))

)
Therefore, as c→∞, f(1)

i → f minimax regret(i) as required.

Min Min Unfairness

Required: f min min unfairness(i) =


1
l if i ∈ argmaxi∈{1,...,m}min j∈{1,...,n} |u

(r)
i, j −u(c)

i, j |

0 otherwise
To represent Min Min Unfairness, we add an additional hidden unit in the first

layer. Let H(1,2) be defined in the same manner as H(1,1).

For H(1,1), we let w1
1,r = 1,w1

1,c = −1 and b1,1 = 0 such that,

H(1,1) = relu(U(r)−U(c)) = max(U(r)−U(c),0) where the max is applied element-wise

For H(1,2), we let w1
1,r = −1,w1

1,c = − and b1,1 = 0 such that,

H(1,2) = relu(U(c)−U(r)) = max(U(c)−U(r),0)
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Now, notice that if w2,1 = 1 and w2,2 = 1,

H(2,1) = H(1,1) + H(1,2) = max(U(r)−U(c),0) + max(U(c)−U(r),0) = |U(r)−U(c)|

Which gives us a measure of “unfairness” as the absolute difference between the

two payoffs.

We can therefore simulate f min min unfairness(i) by letting w2,1 = −1 and w2,2 = −1,

and using the output of H(2,1)
r (which gives us min unfairness), then constructing fi

by letting c→∞.

�

B.2 Multi-layer Perceptron Performance
Figure B.1 compares the performance of our architecture with that of a regular

multilayer perceptron, with and without data augmentation, and the previous state-

of-the-art model on this dataset. It shows that the feed-forward network dramatically

overfitted the data without data augmentation. Data augmentation improved test

set performance, but it was still unable to match state of the art performance. A

three layer instantiation of our model (two layers of 50 hidden units and a single AR

layer) matched the previous state of the art but failed to improve upon it. We suspect

that this may be because the subset of the data that contains only 3 × 3 games is too

small to take advantage of the flexibility of our model.
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We are interested in the model’s ability to predict the distribution over the row player’s action, rather
than just its accuracy in predicting the most likely action. As a result, we fit models to maximize the
likelihood of training data P(D|✓) (where ✓ are the parameters of the model and D is our dataset)
and evaluate them in terms of negative log-likelihood on the test set.

2 Regular neural network performance
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Figure 1: Performance comparison on 3 ⇥ 3 games of a feed forward neural network (FFNet),
a feed forward neural network with data augmentation at every epoch (FFNet (Permuted)), our
architecture fit with the same hyper parameters as used for our best performing model in the main
results (GameNet), and Quantal Cognitive Hierarchy with four hand-crafted features (QCH Linear4).

Figure 1 compares the performance of our architecture with that of a regular feed-forward neural
network, with and without data augmentation, and the previous state-of-the-art model on this dataset.
It shows that the feed-forward network dramatically overfitted the data without data augmentation.
Data augmentation improved test set performance, but it was still unable to match state of the art
performance. A three layer instantiation of our model (two layers of 50 hidden units and a single AR
layer) matched the previous state of the art but failed to improve upon it. We suspect that this may be
because the subset of the data that contains only 3 ⇥ 3 games is too small to take advantage of the
flexibility of our model.

3 Pooling units performance

To test the effect of pooling units on performance, in Figure 2 we first removed the pooling units
from two of the network configurations, keeping the rest of the hyperparameters unchanged. The
models that did not use pooling layers underfit on the training data and performed very poorly on the

2

Figure B.1: Performance comparison on 3×3 games of a feed-forward neural
network (FFNet), a feed-forward neural network with data augmentation
at every epoch (FFNet (Permuted)), our architecture fit with the same
hyper parameters as used for our best performing model in the main
results (GameNet), and Quantal Cognitive Hierarchy with four hand-
crafted features (QCH Linear4).
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Appendix C

Valid Causal Inference with
(Some) Invalid Instruments
Appendix

C.1 Proof of Theorem 5
Theorem 1. Fix a test point (t, x) and let β̂1, . . . , β̂k be estimators of the causal effect

of t at x corresponding to k (possibly invalid) instruments. E.g., β̂ j = f̂ j(t, x). Denote

the true effect as β = E[y|do(t), x]. Suppose that

1. (consistent estimators) β̂ j→ β j almost surely for each instrument. In particu-

lar, β j = β whenever the jth instrument is valid.

2. (modal validity) At least v of the instruments are valid, and no more than v−1

of the invalid instruments agree on an effect. That is, v of the instruments

yield the same estimand if and only if all of those instruments are valid.

Let [l̂, û] be the smallest interval containing v of the instruments and let Îmode = {i :

l̂ ≤ β̂i ≤ û}. Then, ∑
i∈Îmode

ŵiβ̂i→ β
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almost surely, where ŵi,wi are any non-negative set of weights such that each

ŵi → wi a.s. and
∑

i∈Îmode
wi = 1. Further if the individual estimators are also

asymptotically jointly normal,

√
n[β̂1, . . . , β̂k]T → N([β1, . . . ,βk]T ,Σ)

with some covariance matrix Σ ∈ Rk×k. Then it also holds that the modal estimator

is asymptotically normal:

√
n

∑
i∈Îmode

ŵiβ̂i→ N(β,wT ΣImodew).

where ΣImode ∈ R
V×V denotes the covariance of the selected instruments.

Proof. First we argue that Îmode converges to a set that contains only valid instru-

ments. All valid instruments converge to a common value β. The distance between

any two valid instruments is at most twice the distance between β and the furthest

valid instrument. Since at least v of the instruments are valid, this means that there

is an interval (containing the mode) with distance going to 0 that contains v of

the instruments. Eventually this must be the smallest interval containing v of the

instruments, because the limiting β j of the invalid instruments are spaced out by

assumption.

The result follows by the the continuous mapping theorem. �

C.2 Proof of Theorem 6
Theorem 2. For some test point (t, x), let β̂1, . . . , β̂k be k estimates of the causal

effect of t at x. Assume,

[Bounded estimates] Each estimate is bounded by some constants, [ai,bi]

[Convergent estimators] Each estimator converges in mean squared error at a

rate n−r (where r = 1
2 if the estimator achieves the parametric rate), and hence each

estimator has finite variance, Var(β̂i) =
σi
n2r for some σi.

Then, there exists some constant, C, such that E[(ModeIV(Z) − β)2] −

E[( 1
v
∑

i∈V β̂i−β)2] ≤ 9kC σ
nr .
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Proof. Fix some test point (t, x) and without loss of generality, assume that the true

effect, E[y|do(t), x] = 0. Because ModeIV optimizes for the closest V points, we

can upper bound its worst case performance with an adversarial distribution that

deterministically places all invalid instruments on the same point y such that β̂i = y

for all i in I; assume y > 0 (again wlog, the argument is symmetric).

Consider the case where there are v valid instruments and v−1 invalid candidates.

Let d(V) = maxi, j∈V |β̂i− β̂ j| denote the largest distance between the any two valid

estimates, and d∗ = maxi, j∈Îmode
|β̂i − β̂ j| denote the largest distance among the set

of the v closest candidates (regardless of whether or not they are valid). If there is

some candidate i ∈ V such that d∗ = mini∈V |β̂i − y| < d(V), then ModeIV returns
v−1

v y + 1
v β̂i; otherwise d(V) = d∗ and ModeIV matches the oracle performance.

Now, consider the interval C(y) = [− y
3 ,

y
3 ]; if all the valid instruments fall within

C(y), then d(V) = d∗ ≤ 2y
3 by construction. So,

E
[
(ModeIV(Z))2

]
−E


1

v

∑
i∈V

β̂i

2 ≤ (
1−P(β̂i ∈C(y) for all i ∈ V)

) (v−1
v

y +
1
v
β̂i

)2

≤
(
1−P(β̂i ∈C(y) for all i ∈ V)

)
y2 (C.1)

Since each β̂i is bounded ∈ [ai,bi], we know they are σ̃i-sub-Gaussian random

variables for some σ̃i ≤
bi−ai

4 . Let σ̃ = maxi∈V σ̃i and note that there exists some

constant C, such that for all n and i, σ̃ ≤Cσin−r. Now,

P(β̂i ∈C(y) for all i ∈ V) =

k∏
i=1

P
(
β̂i ∈C(y)

)
=

k∏
i=1

(
1−P

(
|β̂i| >

y
3

))
≥

k∏
i=1

(
1− exp

(
−

y2

18σ̃i

))

≥

(
1− exp

(
−

y2

18σ̃

))k

≥ 1− k exp
(
−

y2

18σ̃

)
where the first inequality applies a tail bound on sub-Gaussian random variables

and last inequality uses the fact that (1 + x)k ≥ 1 + kx for x > −1 and k ≥ 1.
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By substituting back into equation (C.1), we see that,

E
[
(ModeIV(Z))2

]
−E


1

v

∑
i∈V

β̂i

2 ≤ y2k exp
(
−

y2

18σ̃

)

so we can get worst case performance by optimizing over, y. Taking partial deviates

with respect to y and setting it to zero, we get,

[
2y∗k−

k(y∗)3

9σ̃

]
exp

(
−

(y∗)2

18σ̃

)
= 0 → y∗ = 3

√
2σ̃

is the only local maximum such that y > 0. And hence, the worst case mean square

error is bounded by,

E[(ModeIV(Z))2]−E


1

v

∑
i∈V

β̂i

2 ≤ 18
e

kσ̃ ≤ 9kσ̃ ≤ 9kC
σ

nr

�

C.3 Relaxing Independence of Instrumental Variables
ModeIV is simplest in the context of independent candidate instruments: this setting

is shown in Figure C.1 (left) where we have k candidates, {zi : i ∈ 1, . . . ,k}, some

of which are valid (shown in blue), and some of which are invalid (e.g. zk shown

in pink has a direct effect on the response). This independent candidates setting is

most common where the instruments are explicitly randomized: e.g. in judge fixed

effects where the selection of judges is random.

A more complex setting is shown in Figure C.1 (right). Here, the candidates

share a common cause, u. In this scenario, if u is not observed, each of the previously

valid instruments (e.g. z1, z2 and zk−1 in the figure) are no longer valid because they

fail the unconfounded instrument assumption via the backdoor path z1← u→ zk→ y.

However, if we condition on all the candidates that have a direct effect on y and treat

them as observed confounders, we block this path which allows for valid inference.

Of course we do not know which of the candidates have a direct effect, so when
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Figure C.1: We primarily focus on the setting on the left where each candidate,
zi, is independent. It is also possible to apply the method in the setting
on the right where the candidates share a common cause, more care is
needed. See the discussion in section C.3.

building an ensemble, for each candidate zi, we treat all z j,i as observed confounds

to block these potential backdoor paths. This addresses the issue as long as there is

not some zk+1 which is not part of our candidate set, but nevertheless opens up a

backdoor path z1← u→ zk+1→ y.

If u is observed, we can simply control for it. This suggests a natural alternative

approach would be to try to estimate u and control for its effect, using an approach

analogous to Wang and Blei [2019]. We plan to investigate this in future work.

C.4 Selecting Instruments?
ModeIV constitutes a consistent method for making unbiased predictions but, some-

what counter-intuitively, it does not directly offer a way of inferring the set of valid

instruments. For example, one might imagine identifying the set of candidates

that most often form part of the modal interval Îmode. The problem is that while

candidates that fall within the modal interval Îmode tend to be close to the mode,

the interval can include invalid instruments that yielded an effect close to the mode

by chance. Since these invalid estimates are close to the truth, they do not hurt the
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50 / 100 valid 60 / 100 valid 70 / 100 valid 80 / 100 valid 90 / 100 valid 100 / 100 valid

DeepIV (opt) 0.036 ± (0.0048) 0.042 ± (0.003) 0.0371 ± (0.0032) 0.0364 ± (0.003) 0.0326 ± (0.0021) 0.0278 ± (0.0021)

MODE-IV 20 0.0525 ± (0.0062) 0.0483 ± (0.0049) 0.0478 ± (0.0049) 0.0473 ± (0.0048) 0.0466 ± (0.0047) 0.04 ± (0.0038)

MODE-IV 30 0.0525 ± (0.0062) 0.0483 ± (0.0049) 0.0478 ± (0.0049) 0.0473 ± (0.0048) 0.0467 ± (0.0047) 0.0399 ± (0.0038)

MODE-IV 40 0.0524 ± (0.0062) 0.0483 ± (0.0049) 0.0478 ± (0.0049) 0.0473 ± (0.0048) 0.0468 ± (0.0047) 0.0399 ± (0.0038)

MODE-IV 50 0.0525 ± (0.0062) 0.0483 ± (0.0049) 0.0479 ± (0.0049) 0.0474 ± (0.0048) 0.0466 ± (0.0047) 0.0398 ± (0.0038)

Mean 0.0529 ± (0.0059) 0.0498 ± (0.005) 0.0498 ± (0.0052) 0.0461 ± (0.0047) 0.0484 ± (0.0048) 0.0403 ± (0.004)

Deepiv (all) 0.1637 ± (0.011) 0.1744 ± (0.0075) 0.2078 ± (0.0069) 0.185 ± (0.0087) 0.1387 ± (0.0081) 0.0297 ± (0.0018)

Table C.1: Average absolute bias in estimation of the conditional average
treatment effect. The ensemble methods tended to have slightly larger
bias than the optimal model, but far less than the naive approach which
uses all instruments. The mean aggregation function performs relatively
well on this task, but this approach comes with no guarantees, so it
degrades in settings with more bias.

estimate. We can see this in Figure 6.1 where invalid instruments form part of the

modal interval in the region t ∈ [−3.5,−2], without introducing bias.

C.5 Additional Experimental Details

Network architectures and experimental setup All experiments used the same

neural network architectures to build up hidden representations for both the treatment

and response networks used in DeepIV, and differed only in their final layers. Given

the number of experiments that needed to be run, hyper-parameter tuning would have

been too expensive, so the hyper-parameters were simply those used in the original

DeepIV paper. In particular, we used three hidden layers with 128, 64, and 32

units respectively and ReLU activation functions. In the Mendelian randomization

experiments, we used The treatment networks all used mixture density networks

with 10 mixture components and the response networks were trained using the two

sample unbiased gradient loss [see Hartford et al., 2017, equation 10]. We used

our own PyTorch [Paszke et al., 2019] re-implementation of DeepIV to run the

experiments.

For all experiments, 10% of the original training set was kept aside as a val-

idation set. Both the demand and Mendelian randomization simulations had 90

000 training examples, 10 000 validation examples and 50 000 test examples. All
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mean squared error numbers reported in the paper are calculated with respect to the

true y (with no confounding noise added) on a uniform grid of 50 000 treatment

points between the 2.5th and 97.5th percentiles of the training distribution. As a

result, we are measuring mean squared error relative to the target y on the uniform

grid of treatment values corresponds to E[y|do(t′), x,z] for each t′ on the grid. 95%

confidence intervals around mean performance were computed using Student’s t

distribution.

The networks were trained on a large shared compute cluster that has around

100 000 CPU cores. Because each individual network was relatively quick to

train (less than 10 minutes on a CPU), we used CPUs to train the networks. This

allowed us to fit the large number of networks needed for the experiments. Each

experiment was run across 30 different random seeds, each of which required 10

(demand simulation) and 102 (Mendialian randomization) network fits. In total,

across all experimental setups, random seeds, ensembles, etc. approximately 100

000 networks were fit to run all the experiments.

Biased demand simulation The biased demand simulation code was modified from

the public DeepIV implementation. In the original DeepIV implementation, both the

treatment and response are transformed to make them approximately mean zero and

standard deviation 1; we left these constants unchanged (tstd = 3.7, tµ = 17.779,ystd =

158,yµ =−292.1). The observed features include a time feature, x0 ∼ unif(0,10), and

x ∼ Categorical( 1
7 , . . . ,

1
7 ), a one-hot encoding of 7 different equally likely “customer

types”; each type modifies the treatment via the coefficient β(x) = [1,2, . . . ,7]T . These

values are unchanged from the original Hartford et al. data generating process. We

introduce multiple instruments, z1:k, whose effect on the treatment, t, and response,

y, is via two different linear maps β(zt) ∈Rk and β(zy) ∈Rk; each of the coefficients in

these vectors are sampled independently so β(z∗)
i ∼ unif(0.5,1.5), with the exception

of the valid instruments where β(zy)
i = 0 for all i ∈ V. The γ parameter scales the

amount of bias introduced via exclusion violations; note that because the sin varies

between [−1,1], we scale up this bias by a factor of 60 so that the effect it introduces

is of the same order of magnitude as the variation in the original Hartford et al.

data generating process (where std. dev(y) ≈ ystd = 158). The full data generating
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process is as follows,

z1:k, ν ∼ N(0,1) x0 ∼ unif(0,10) e ∼ N(ρν,1−ρ2), x ∼ Categorical(
1
7
, . . . ,

1
7

)

t′ = 25 + (zTβ(zt) + 3)ψ(x0) + ν

y′ = 100 + 10xTβ(x)ψ(x0) + (xTβ(x)ψ(x0)−2)︸               ︷︷               ︸
Treatment effect

t′+γ60sin(zTβ(zy))︸             ︷︷             ︸
Exclusion violation

+e

t = (t′− tstd)/tµ y = (y′− ystd)/yµ

Mendelian randomization simulation This data generating process closely fol-

lows that of Simulation 1 of Hartwig et al. [2017], but was modified to include

heterogeneous treatment effects. This description is an abridged version of that

given in Hartwig et al.; we refer the reader to Hartwig et al. [2017] for more

detail on the choice of parameters, etc.. The instruments are the genetic vari-

ables, zi, which were generated by sampling from a Binomial (2, pi) distribution,

with pi drawn from a Uniform(0.1 ,0.9) distribution, to mimic bi-allelic SNPs

in Hardy-Weinberg equilibrium. The parameters that modulate the genetic vari-

able effect on the treatment are given by, αi =
√

0.1
σzx

νi, where νi ∼ unif(0.01,0.2)

and σzx = std. dev(
√

0.1
∑

i νizi). Similarly, the exclusion violation parameters,

δi =
|I|
√

0.1
kσzy

νi, where again νi ∼ unif(0.01,0.2) and σzy = std. dev(
√

0.1
∑

i νizi). Note

that δi is scaled by |I|k (the proportion of invalid instruments), which ensures that the

average amount of bias introduced is constant as the number of invalid instruments

vary. Error terms u, εx, εy were independently generated from a normal distribution,

with mean 0 and variances σ2
u,σ

2
y and σ2

y , respectively, whose values were chosen

to set the variances of u, x and y to one. These scaling parameters are chosen to

enable an easy interpretation of the average treatment effect, β: with this scaling,

β = 0.1 implies that one standard deviation of t causes a 0.1 standard deviation of y

and hence the causal effect of t on y explains 0.12 = 0.01 = 1% of the variance of

y. The only place our simulation differs from Hartwig et al., is the treatment effect

is a function of observed coefficients, x ∈R10, with each xi ∼ uniform(−0.5,0.5),

and the treatment effect is defined as, β(x) := round(xTγ(xt),0.1), with γ(xt) a sparse

vector of length 10, with three non-zeros γ(xt)
i ∼ uniform(0.2,0.5). The resulting true
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β(x), takes on values in {−0.3,−0.2, . . . ,0.2,0.3}. We also use 100 genetic variants

instead of the 30 used in Hartwig et al., so that we could test ModeIV in a larger

scale scenario. The resulting data generating process is given by,

zi ∼ Binomial(2, pi) for i in [1 . . .K], β(x) := round(xTγ(xt),0.1).

t :=
K∑

j=1

α jz j +ρu + εx

y := β(x)t +

K∑
j=1

δ jz j + u + εy

C.6 Details on the Bootstrap Experiments
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Figure C.2: Bootstrap 90% confidence intervals of conditional dose-response
curves. These plots show the average prediction and intervals, averaged
across values of the conditioning variable, x, such that the true slope,
β(x), is given by the value indicated in the plots.
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For all the bootstrap experiments we estimated a bootstrap confidence interval

point-wise so, at a given point (t, x,z) the interval is computed as,

CIα(t, x,z) = ¯̂f (t, x,z)± zα/2se( f̂ (t, x,z)) where ¯̂f (t, x,z) =
1
B

B∑
b=1

f̂ (t, x,z; D∗b),

se( f̂ (t, x,z)) =

√√√
1
B

B∑
b=1

(
f̂ (t, x,z; D∗b)− ¯̂f (t, x,z)

)2

We used B = 50 bootstrap samples where for each bootstrap sample of the dataset

D∗b, we run the full ModeIV procedure (i.e. we fit k estimates of DeepIV on D∗b,

each with a different one of the the k instruments). zα/2 denotes the α/2 quantile of

a standard normal distribution.

We compute coverage by evaluating the proportion of samples for which the

true y falls within an estimated bootstrap confidence interval,

E[1(y ∈CIα(t, x,z))] ≈
1
n

∑
i

1(yi ∈ Iα(ti, xi,zi))

For both the demand and Mendelian randomization experiments we used n =

10000 test points.

Demand simulations The bootstrap results presented in Table 6.1 give empirical

coverage estimates for the demand simulation with between 4/7 and 6/7 valid

instruments. We repeat the experiment across 20 random seeds and report average

coverage across those experiments.

Mendelian randomization The Mendelian randomization experiments were too

computationally expensive to give bootstrap inference results across the whole range

of valid instruments and random seeds that we tested in point estimate experiments.

Instead, we just tested coverage with 70% valid instruments on a single random

seed1. The results are summarized in Table C.2 and Figure C.2.

1i.e. the random seed for the data generating process was fixed to 1 (chosen arbitrarily) which
fixes the γ,δ and α parameters
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Model Coverage (70 / 100 valid)

ModeIV-10 64.76%
ModeIV-20 63.94%
ModeIV-30 62.64%
ModeIV-40 60.38%
ModeIV-50 59.78%
DeepIV-Opt 80.96%
DeepIV-All 30.96%

Table C.2: Mendelian randomization empirical coverage for 90% bootstrap
confidence intervals. All the approaches underestimate coverage: the
true y falls with the interval 80% of the time, while the various Mode-IV
approaches get between 60% and 65%. This is far better than DeepIV-all
which only manages 30% because of its far more significant bias.

Figure C.2 shows the confidence intervals for the conditional does-response

curves. Recall that in this simulation, the conditional average treatment effect is

given by β(x) := round(xTγ(xt),0.1), where γ(xt) are some unknown parameters, and

the rounding ensures that β(x) can only take on a fixed number of discrete values.

This approach makes visualizing conditional average treatment effects easier as

we can examine the average predicted effect for each of the different ground truth

values of β(x). Of course, these plots are only possible to make given the knowledge

of the ground truth β(x), so they are only useful as a diagnostic tool in simulated

data, not something that we would be able to plot on real data. These conditional

does-response curves are given by,

E[ŷ|t,β′] = Ez[Ex:β(x)=β′[ f̂ (t, x,z)|z]|t,β]

That is, we average the predictions over all x such that the true value of β(x) is β′.

Note that the curves are linear because we parameterize the deep network such the

the condition treatment-response relationship is linear. The confidence intervals are

computed in the same manner,

E[CIα(ŷ)|t,β′] = Ez[Ex:β(x)=β′[CIα(t, x,z)|z]|t,β]
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The plots show that both ModeIV and DeepIV-Opt do a good job of recovering

the ground-truth relationship, particularly for positive values of the ground truth

relationship. For negative values, some bias remains, which is the likely cause of

the poor coverage numbers shown in Table C.2. The fact that even DeepIV-opt

underestimates coverage, suggests this may be the result of finite-sample bias rather

than a problem with ModeIV itself.

C.7 Details on Two-Stage Hard Thresholding
Experiments

# valid / 100 ATE: β̂ True Positive False Positive True Negative False Negative

50 0.08 0.47 0.19 0.31 0.03
60 0.03 0.56 0.09 0.31 0.04
70 0.02 0.66 0.04 0.26 0.04
80 0.01 0.75 0.01 0.19 0.05
90 0.00 0.84 0.00 0.10 0.06
100 0.00 0.93 0.00 0.00 0.07

Table C.3: Average treatement effect and confusion matrices for Guo et al.
[2018]’s two-stage hard thresholding algorithm on the Mendelian ran-
domization dataset. When 70 or more instruments were valid, it had a
low false positive rate. As a result, it accurately recovered the average
treatment effect for this simulation (β = 0.).

We used Guo et al. [2018]’s public R implementation of Two-Stage Hard Thresh-

olding (available here). To estimate E[y|do(t), x], we ran two-stage least squares

on the predicted valid instruments while controlling for the invalid candidates. All

experiments were run 30 times with different seeds for the data generating process

and we report mean performance.

ModeIV for linear constant treatment effects
We also evaluated ModeIV on Guo et al. [2018]’s low-dimensional data generat-

ing process.2 We used the same network architecture as the MR experiments with a

conditionally linear output so we could observe the coefficient on t (i.e. β̂) directly.

2Guo et al.’s high-dimensional DGP involves a large number of candidates that fail the relevance
assumption. Given that relevance is testable and ModeIV is computationally expensive, relevance
testing is better addressed as a pre-processing step.
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Model n β̂10 β̂25 β̂50 β̂75 β̂90

ModeIV-0.2 1000 1.043 1.151 1.285 1.471 2.565
10000 0.989 1.013 1.044 1.087 1.249

ModeIV-0.3 1000 1.056 1.151 1.270 1.423 1.734
10000 0.993 1.013 1.040 1.075 1.132

ModeIV-0.4 1000 1.066 1.155 1.267 1.412 1.665
10000 0.997 1.015 1.039 1.072 1.125

ModeIV-0.5 1000 1.079 1.161 1.268 1.415 1.667
10000 1.000 1.016 1.039 1.072 1.128

DeepIV-opt 1000 0.908 0.980 1.059 1.142 1.243
10000 0.976 0.987 1.004 1.019 1.036

Table C.4: With enough data, ModeIV performs will in the linear setting. Here
we show performance on Guo et al. [2018]’s data generating process. The
true β = 1; because ModeIV controls for invalid candidates, there is some
variation in predicted β̂ across examples; we show this with percentiles
of the β̂ estimates which are denoted β̂p.

Table C.4 reports percentiles of the estimated ATE with n of 1000 and 10000. This

is a massively over-parameterized model for the task (roughly 20 000 parameters

for each of the 10 candidates; note that you should never do this if you know the

problem is linear!). As expected, ModeIV was less efficient but with 10 000 training

examples it picked up only a small amount of bias, ˆATE = 1.039 (for a true ATE of

1). With 1000 samples ModeIV incurred large bias from the invalid candidates.

137


	Abstract
	Lay Summary
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Acknowledgments
	Dedication
	Introduction
	Deep networks for permutation equivariant data
	Causal inference

	I Permutation Equivariance: Models and Applications
	Deep Networks for Exchangeable Arrays
	Introduction
	Exchangeable Matrix Layer
	Sparse Inputs

	Matrix Factorization and Completion
	Inductive and Transductive Analysis
	Architectures
	Subsampling in Large Matrices
	Related Literature

	Empirical Results
	Transductive Setting (Matrix Interpolation)
	Inductive Setting (Matrix Extrapolation)
	Comparison of sampling procedures

	Extension to Tensors

	Deep Learning for Predicting Human Strategic Behavior
	Introduction
	Related Work
	Modeling Human Strategic Behavior with Deep Networks
	Equivariant Hidden Units
	Pooling units
	Output distribution
	Action Response Layers
	Representational generality of our architecture

	Experiments
	Discussion and Conclusions

	Predicting Propositional Satisfiability via End-to-End Learning
	Introduction
	Related Work
	Model Architecture
	Experimental Setup
	Experimental Results
	Conclusions


	II Causal Inference with Instrumental Variables
	DeepIV
	Introduction
	Related work
	Nonlinear instrumental variable estimation
	Estimating and validating DeepIV
	Optimization for DeepIV networks

	Experiments
	Simulations
	Application: Search-advertisement position effects

	Discussion

	Valid Causal Inference with (Some) Invalid Instruments
	Introduction
	Related work
	ModeIV
	Experiments
	Biased demand simulation
	Mendelian randomization simulation

	Discussion and Limitations

	Bibliography
	Deep Networks for Exchangeable Arrays
	Notation
	Proofs
	Proof of Proposition 3
	Proof of Proposition 4
	Proof of Theorem 2
	Proof of Theorem 1

	Details of Architecture and Training

	Deep Learning for Predicting Human Strategic Behaviour
	Representing Behavioural Features
	Multi-layer Perceptron Performance

	Valid Causal Inference with (Some) Invalid Instruments Appendix
	Proof of Theorem 5
	Proof of Theorem 6
	Relaxing Independence of Instrumental Variables
	Selecting Instruments?
	Additional Experimental Details
	Details on the Bootstrap Experiments
	Details on Two-Stage Hard Thresholding Experiments



